Skip to main content

Postdoc position - Target Discovery and Validation For Novel Malaria Drugs Using An Integrated Chemical Biology Approach


A number of you have asked for further details on the malaria postdoc project.... (details on how to apply, deadlines, etc can be found here).

Malaria remains one of the most significant causes of developing world mortality, and this global burden coupled with recent reports of parasites resistant to artemesinin, the most recently released anti-malarial, makes the search for new therapeutics an urgent priority. While the availability of multiple Plasmodium genome sequences has the potential to make a significant impact on malaria drug development, almost all previously successful therapies were empirically discovered and developed, and without a defined molecular target. Such entirely empirical-based discovery is now not considered practical, and so a hybrid approach of cell-based screening followed by target discovery for bioactive hit series is a compelling and practical way forward. Recently a number of very significant disclosures of HTS cell-based screening studies have occurred (see http://www.ebi.ac.uk/chemblntd). These data also typically have i) secondary assays to establish estimates of IC50 values, ii) cytotoxicity values against a human cell-line, and iii) a measure of compound ‘promiscuity’ (the propensity of a compound to be active in large number of assays, sometimes known as ‘frequent hitters’). Given that the compounds are cidal, and cell-penetrant, these datasets are highly valuable for future target and lead discovery for novel malaria therapies.

However, for these data, the precise molecular targets and mechanism of action are currently unknown, and a major challenge is in the identification of a target/mechanism of action for each compound/compound class. Once a specific target is known, it greatly simplifies future validation and compound optimisation, and also provides key insights into disease biology, pathogenesis, therapeutic index (TI), likelihood of resistance, and so forth.

The available postdoc position is multidisciplinary and highly collaborative and links computer-based target prediction and analysis along with experimental validation in order to identify potentially novel targets for the development of new and innovative anti-malarial therapies. The position will fund a postdoctoral position working jointly between two newly established groups, one (Overington, EMBL-EBI) with an expertise in chemoinformatics, drug discovery and lead optimisation, and the second (Rayner, Sanger) with expertise in malaria disease biology, genomics, experimental genetic manipulation and target discovery. Given the broad range of techniques required, we will provide training in any required areas.

The work will train a researcher in the principles of drug discovery as well as advanced molecular biology and genetic manipulation techniques in Plasmodium parasites, and will therefore give them a wide-ranging set of skills in the key future area of Chemical Biology.


The planned work programme is as follows:

  • Clustering of compound series – each cluster will probably share a common mechanism of action.
  • Selection of series for further detailed analysis.
  • In silico prediction of molecular targets for selected compound clusters.
  • Comparative genomic analysis of the predicted targets.
  • in vitro validation of 40-50 predicted targets. This initial screen will be performed in the model organism P. berghei.
  • In vitro validation of 5-10 high priority targets in P. falciparum parasites.
  • For any validated targets, in vitro assays will be developed and structural collaborations explored to allow confirmation of binding/activity for selected targets.

Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser