Skip to main content

New Drug Approvals 2011 - Pt. XVIII Ezogabine (PotigaTM)


ATC code: N03AX21

On June 10th, FDA approved ezogabine (trade name Potiga, NDA 022345) to treat seizures associated with epilepsy in adults. However, before being launched, Potiga waits categorised by the Drug Enforcement Agency (for  review under the Controlled Substances Act) before formal marketing can proceed.

Epilepsy is a chronic neurological disorder involving a variety of symptoms caused by abnormal electrical activity in the brain. Episodic bouts ('seizures') can potentially be controlled by medication - however, for around 1 in 3 patients, this can not achieved satisfactorily with current medication. Ezogabine (ChEMBLID:41355) represents a novel approach, being the first anticonvulsant to specifically target neuronal potassium channels

The molecular targets of ezogabine are KCNQ/Kv7 potassium channels; by stabilizing their open conformation, the drug reduces their excitability. It shares its mode of action with the structurally very similar non-opioid analgesic Flupiritine (ChEMBLID:255044). There are numerous other anticonvulsant drugs approved, such as Carbamazepine (ChEMBLID:108), or Lamotrigine (ChEMBLID:741), two sodium channel blockers. 

Its name stem, -gab-, designates it a GABA mimetic (γ-Aminobutyric acid, ChEMBL ID 96, the predominant inhibitory neurotransmitter in the mammalian central nervous system). For a substance to be GABAergic, there is no need to directly compete with GABA, or to bind to the GABA receptor. However, there is evidence that ezogabine directly interacts with the GABAA receptor, acting as an allosteric agonist, synergetically increasing GABA binding, thereby excerting a sedative effect additionally to its primary target, KCNQ.

The main molecular target of ezogabine are the human KCNQ2 and -3 potassium channels (UniProt O43526 and O43525, respectively) - according to a patch clamp assay, it has 1.3 uM affinity for the murine KCNQ2 ortholog (see also ref). There are no experimental structures available for members of the KCNQ protein family, although there are X-Ray structures for other potassium channels.



Ezogabine (canonical smiles CCOC(=O)Nc1ccc(NCc2ccc(F)cc2)cc1N , standard InChI InChI=1S/C16H18FN3O2/c1-2-22-16(21)20-15-8-7-13(9-14(15)18)19-10-11-3-5-12(17)6-4-11/h3-9,19H,2,10,18H2,1H3,(H,20,21)) has 6 rotatable bonds, a molecular weight of 303.3 Da, 3 hydrogen bond donors, 2 hydrogen bond acceptors, and is thus fully Rule-of-Five compliant.

Ezogabin has moderately high bioavailability (50-60%), a high volume of distribution (6.2 L/kg) and a terminal half-life of 8 to 11 hours. Potiga tablets are administered three times daily. Ezogabine has a number of potentially severe adverse effects, such as urinary retention, and psychiatric symptoms such as new or intensification of depression, anxiety, psychosis, and in rare cases suicidal thoughts. 

Potiga has been developed by Valeant and will be marketed by GSK.

Full prescribing information will become available at launch of the drug.

Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser