Skip to main content

New Drug Approvals 2011 - Pt. XXX - Aflibercept (EyleaTM)


ATC code (partial): S01LA

On November 18th 2011, the FDA approved Aflibercept (trade name: Eylea; Research Code: AVE-0005,  also known as VEGF Trap), a recombinant fusion protein indicated for the treatment of patients with neovascular (wet) age-related macular degeneration (AMD).

AMD is an eye condition which usually occurs in older patients and affects the macula area of the retina, causing loss of vision and eventually blindness. In particular, wet AMD is characterised by an abnormal growth of new blood vessels (neovascularisation) behind the retina. This originates from an abnormal activation of angiogenesis, by the vascular endothelial growth factor-A (VEGF-A; ChEMBL: CHEMBL1783; Uniprot: P15692) and the placenta growth factor (PlGF; ChEMBL: CHEMBL1697671; Uniprot: P49763), of the vascular endothelial growth factor receptors VEGFR-1 (ChEMBL: CHEMBL1868; Uniprot: P17948) and VEGFR-2 (ChEMBL: CHEMBL279; Uniprot: P35968), two receptor tyrosine kinases present on the surface of endothelial cells. This leads to abnormal increased permeability, scarring and possibly to the loss of fine-resolution central vision. Aflibercept acts as a soluble 'decoy' receptor that binds VEGF-A and PlGF and thereby inhibits the binding and activation of the VEGFR-1 and VEGFR-2 receptors.

Aflibercept is a recombinant fusion protein that incorporates portions of extracellular domains of the human VEGFR-1 (containing Ig-like C2-type 2 domain fragment; Uniprot: P17948|151-214|) and VEGFR-2 (containing Ig-like C2-type 3 domain fragment; Uniprot: P35968|224-320|) fused to the Fc portion of human immunoglobulin G1 (IgG1). Aflibercept is a dimeric glycoprotein with a protein molecular weight of 97 kDa (115 kDa with glycosylation).


>Aflibercept
SDTGRPFVEM YSEIPEIIHM TEGRELVIPC RVTSPNITVT LKKFPLDTLI PDGKRIIWDS
RKGFIISNAT YKEIGLLTCE ATVNGHLYKT NYLTHRQTNT IIDVVLSPSH GIELSVGEKL
VLNCTARTEL NVGIDFNWEY PSSKHQHKKL VNRDLKTQSG SEMKKFLSTL TIDGVTRSDQ
GLYTCAASSG LMTKKNSTFV RVHEKDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR
TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN
GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS
DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH
YTQKSLSLSP G


Other therapies to treat AMD are available on the market and these include Verteporfin (ChEMBL: CHEMBL1200573; approved in 2000; trade name Visudyne), Pegaptanib sodium (ChEMBL: CHEMBL1201421; approved in 2004; trade name Macugen) and Ranibizumab (ChEMBL: CHEMBL1201825; approved on 2006; trade name Lucentis).

Aflibercept recommended dosage is 2 mg administrated by intravitreal (into the eye cavity) injection every 4 weeks for the first 12 weeks, followed by 2 mg via intravitreal injection once every 8 weeks.

Following intravitreal administration of 2 mg per eye, a fraction of the administrated dose binds to the endogenous VEGF in the eye to form the inactive Aflibercept:VEGF complex. Once absorbed into the systemic circulation, Aflibercept presents in the plasma as the free unbound Aflibercept and predominantly as the inactive Aflibercept:VEGF complex. Aflibercept has a volume of distribution (Vd) of 6 L and a terminal elimination half-life (t1/2) of 5 to 6 days after iv administration of doses of 2 to 4 mg.kg-1 of Aflibercept. Aflibercept undergoes elimination through both target-mediated disposition via binding to free endogenous VEGF and metabolism via proteolysis.

The full prescribing information for Eylea can be found here.

The license holder is Regeneron Pharmaceuticals, Inc. and the product website is www.eylea.com.

Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser