Skip to main content

New Drug Approvals 2012 - Pt. IX - Florbetapir F 18 (AmyvidTM)






ATC code: V09AX05 (incomplete)


On April 6th, FDA approved Amyvid (Florbetapir F 18), a radiolabeled intravenous imaging agent for the differential diagnosis of Alzheimer's Disease.

Alzheimer's Disease (OMIM 104300, MeSH D000544) is a non-treatable, progressively worsening and fatal disease and the main cause of dementia.
Most commonly affecting the elderly (>65y), it correlates with the growing deposits of aggregating beta amyloid (UniProt P05067) fibrils in the brain, eventually physically destroying it, and abnormal aggregation of the tau protein (UniProt P10636), a microtubule-associated protein inside neurons.
Early symptoms of Alzheimer's include impairment of short term memory, advanced ones, irritability, confusion, aggression, mood swings, and long term memory loss, amongst others.

Diagnosis of Alzheimer's is complicated by overlap of symptoms with other cognitive diseases, and "normal" signs of ageing; sometimes, only brain autopsy (necessarily posthumous) can confirm its presence, while, conversely, patients displaying typical Alzheimer's symptoms sometimes don't show its physiological manifestation. Differential diagnostic techniques include detection of (amongst other biomarkers) amyloid or tau proteins in the spinal fluid, and brain imaging using Positron Emission Tomography (PET), with or without contrast enhancing agents, i.e. radionuclides. A drawback of an early such compound, Pittsburgh compound B (PiB, ChEMBL ID CHEMBL207456, PubChem 2826731), is the short half life (~20 minutes) of the carbon isotope (11C) included. Florbetapir, on the other hand, has a radioactive fluorine isotope (18F) with a half life of ~2 hours, improving its handling and signal strength.

It has to be noted that the presence of plaques, e.g. visualized by PET, and potentially aided by Florbetapir, does not necessarily and sufficiently indicate Alzheimer's; plaques may be present in patients with other neurological disorders, or elderly people with normal cognition. However the absence of significant plaques may rule out the possibility of a patient suffering from Alzheimer's.


Florbetapir (ChEMBL ID CHEMBL1774461, PubChem 24822371) is a radiocompound with molecular weight 360.4 Da, ALogP 3.14, 1 hydrogen bond donor, 4 hydrogen bond acceptors, and thus fully rule of five compliant. It possesses a radioactive isotope of fluorine, 18F, and a C=C double bond in trans / E configuration.
Its systematic (IUPAC) name is 4-[(E)-2-[6-[2-[2-(2-fluoranylethoxy)ethoxy]ethoxy]pyridin-3-yl]ethenyl]-N-methylaniline, Canonical SMILES CNc1ccc(\C=C\c2ccc(OCCOCCOCC[18F])nc2)cc1, Standard InChI=1S/C20H25FN2O3/c1-22-19-7-4-17(5-8-19)2-3-18-6-9-20(23-16-18)26-15-14-25-13-12-24-11-10-21/h2-9,16,22H,10-15H2,1H3/b3-2+/i21-1.

After injection of Amyvid as a single recommended dose of 370 MBq, the agent passes the blood brain barrier and accumulates at amyloid plaques in the patient's brain. 30 to 50 minutes post injection, a 10 minute PET image is acquired.

It is unknown whether Amyvid affects reproductive capacity or causes fetal harm, or whether it is secreted in human milk, but it is not recommended to be used in the respective population. The agent is not indicated for use in pediatric patients. Majority of clinical studies subjects being elderly, no overall differences in safety or effectiveness between them and younger subjects were observed. Because of the agent being radioactive, special precautions have to be taken retrieving, transporting, and administering the agent. The radiation absorbed dose from a single Amyvid dose is 7 mSv in an adult and thus comparable to a chest CT scan, or about twice the normal yearly background dose.
Notable adverse reactions include headache (<2% of patients), musculoskeletal pain, fatigue, nausea (<1%), and anxiety, back pain, increased blood pressure, claustrophobia, feeling cold, insomnia, and neck pain (<0.5%). In early 2011, FDA recommended against approval of Florbetapir, unless structured training programmes for PET readers using Florbetapir would be provided; latest clinical trials of Florbetapir include data from readers either trained manually, or electronically, both proving to be effective.

Amyvid has been developed by Eli Lilly and Company, and Avid Radiopharmaceuticals Inc., its wholly owned subsidiary, and is marketed by Lilly.

The full prescribing information can be found here.



Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser