Skip to main content

New Drug Approvals 2012 - Pt. XI - Taliglucerase alfa (ElelysoTM)



ATC code: A16AB11
Wikipedia: Taliglucerase alfa
 

On May 1, the FDA approved taliglucerase alfa for the treatment of Type I Gaucher's disease. Gaucher's disease is the most common of the lysosomal storage diseases. It is a hereditary disease caused by a deficiency of the enzyme β-glucocerebrosidase (Uniprot: P04062), also called β-Glucosidase. Gaucher's disease is a rare genetic disease with an incidence of 1 in 50,000 births and is considered an orphan disease. Type I Gaucher's disease is about 100 times more common in people of Ashkenazi jewish descent compared a north American population. Symptoms of type I Gaucher's disease begin typically in early adulthood and include enlarged liver and grossly enlarged spleen, impaired bone structure, anemia and low platelet levels, leading to prolonged bleeding and easy bruising. If enzyme replacement therapy (ERT) is available, the prognosis for patients with type I Gaucher's disease is good.

β-Glucocerebrosidase is an enzyme of 536 amino acids and molecular weight of approximately 59.7 kDa. The gene for β-glucocerebrosidase is located on the first chromosome (1q21) and catalyzes the hydrolyzation of glucocerebrosides (eg. ChEBI:18368), a process required for the turnover of the cellular membranes of red and white blood cells.  Macrophages clearing these cells fail to metabolize the lipids, accumulating them instead in their lysosomes.  Thus, macrophages turn into dysfunctional Gaucher cells and abnormally secrete inflammatory signals. The deficiency of glucocerebrosidase in Type I Gaucher's disease is only partial and in most cases caused by a mutation  replacing asparagine with serine in the 370th residue of the protein sequence. The deficiency of the mutant enzyme can be compensated by injection of an exogenous replacement and drastically improve the prognosis for patients with type I Gaucher disease. Prior to the approval of taliglucerase alfa, imiglucerase and velaglucerase alfa were already available ERTs for type I Gaucher's disease. The graphic below illustrates the reaction catalyzed by β-glucocerebrosidase and ERTs. The enzyme classification code for β-glucocerebrosidase is 3.2.1.45.



 Taliglucerase alfa is a monomeric glycoprotein containing 4 N- linked glycosylation sites and has a molecular weight of 60,8 kDa. The recombinant enzyme differs from native human glucocerebrosidase by two amino acids at the N terminal and up to 7 amino acids at the C terminal. Taliglucerase alfa is decorated with mannose-terminated oligosaccharide chains that are specifically recognized by macrophage receptors and assist in 'homing' the enzyme to its target cells.

Taliglucerase alfa is the first ERT expressed in plant cells (carrot root cells), not mammalian cells. Cultures of plant cells are more cost-effective for the expression of recombinant enzymes. 


Crystal structure of the human glucocerebrosidase (PDBe 1ogs).


The recommended dose is 60 Units/kg of body weight administered once every 2 weeks as a 60-120 minute intravenous infusion. A Unit is the amount of enzyme that catalyzes the hydrolysis of 1 micromole of the synthetic substrate para-nitrophenyl-β-D-glucopyranoside (pNP-Glc) per minute at 37°C. Adverse effects include pharyngitis, headache, arthralgia, flu and back pain.

Taliglucerase alfa is marketed by Pfizer and Protalix under the brand name Elelyso

The full prescribing information can be found here.


Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser