Skip to main content

Compound Sets and Availability



Chemical databases come in many different types and flavours, and given that we now have UniChem up and running, and it is being actively used by at least some of you, our minds have turned a little to describing these ‘flavours’ and ‘resolutions’. One of the key things a user is interested in is how easy is it to get hold of a compound, since this is usually a key filter applied to actually doing anything with the results of a database search. The cost implications of needing to commission synthesis, or potentially try and develop new synthetic methodology to a compound are substantial, and there is a substantial literature on the computational assessment of synthetic accessibility (q.v.).

So, here is a simple five state classification that reflects the typical availability of a compounds in a chemical collection.
  1. A compound has been previously been synthesized and is readily available from chemical vendors.
  2. A compound has been previously synthesized but would require resynthesis.
  3. A compound has not been previously synthesized, but close analogues have and the compound is likely to be readily synthesizable. This class of molecule is often associated with the phrase ‘virtual library’.
  4. A compound has not been previously synthesized, and effort would be required to think about synthetic access to the compound.
  5. A compound is theoretically possible with respect to valence rules, but is so unstable that it is unlikely that it ever can be isolated in pure form and then experiments in a biofluid carried out.
Of course, all these classifications are interesting, but you can do a lot more, a lot quicker and cheaper if a compound is in set 1.

As an estimate of the likely difference in cost between these different classes, I personally, would rate the cost differences, relative to set 1, as twenty fold for set 2, forty fold for set 3, and two hundred fold for set 4 - but these are just my estimates, and there will be a big variance in these costs dependent of the exact compound, its class, etc. Others will have better or different estimates of the average cost differences between the sets (comments welcome!).

Because of the way that people have assembled chemical databases, entire primary databases tend to cluster in a similar way - for example ChEMBL is mostly 2), DrugBank is mostly 1) and GDB-17 is mostly 4). Directly from the above definition, every compound with a known bioactivity has to have been synthesized, and so ChEMBL will always be a 2) in this classification. Of course, some compounds in ChEMBL are readily available, but it is a clear minority.

When people build federated chemical databases (those with little unique primary content, but primarily add value by bringing lots of feeder databases together; for example PubChem and ChemSpider) the picture gets a little more complicated at a database level, since they are often blends of synthesized and ‘virtual’ compound sets. But the same need to indicate the availability/provenance of a structure is useful, and federated databases need to store the original primary database (which may or may not itself be available outside of the federated database). 

So, a couple of thoughts:

  • Is this classification useful to apply to the contents of UniChem? 
  • Is the following classification of the UniChem component databases useful and valid?
  1. DrugBank, PDBe, IUPHAR, KEGG, ChEBI, Array_Express, NIH_NCC
  2. ChEMBL, ZINC, eMolecules
  3. IBM, Patents, SureChem (we don’t currently have GDB in UniChem, but if it was it would be in this set.

See UniChem itself for more details of what is behind these set names.

Comments

Unknown said…
Hi John,
I just want to add a comment of clarification that ChemSpider does not accept virtual compound sets and we do ask where we think that a dataset may be virtual. However, there may be cases where chemical vendors provide a set of files that includes a mixture of synthesised and virtual data and we are not able to identify the virtual data (they often look very similar to combinatorial libraries).

A guiding principle of the ChemSpider database is that it should contain only chemical species that have been made/isolated/analysed/detected - 'real' compounds (for want of a better term).

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser