Skip to main content

New Drug Approvals 2014 - Pt. II - Tasimelteon (HetliozTM)



ATC Code: N05CH
Wikipedia: Tasimelteon

On January 31st 2014, the FDA approved Tasimelteon (Tradename: Hetlioz; Research Code(s): VEC-162, BMS-214778), a melatonin receptor agonist, for the treatment of Non-24-hour sleep-wake disorder (Non-24).

Non-24-hour sleep–wake disorder (Non-24) is a chronic circadian rhythm sleep disorder, mostly affecting blind people. It is characterised by insomnia or excessive sleepiness related to abnormal synchronization between the 24-hour light–dark cycle and the endogenous circadian cycle (slightly longer than 24 hours). This deviation can be corrected by exposure to solar light, which resets the internal clock, however, the loss of photic input, and the absence of light perception in the majority of patients, prevents them from drifting back into normal alignment.

Tasimelteon is an agonist at melatonin MT1 and MT2 receptors, with a relative greater affinity for MT2. These receptors are thought to be involved in the control of circadian rhythms, consequently, the binding of tasimelteon to these receptors, and the resulting induced somnolence, is believed to be the mechanism by which tasimelteon aids in the synchronisation of the internal circadian clock with the 24-hour light–dark cycle.

Melatonin receptors (Uniprot accession: P48039 and P49286; ChEMBL ID: CHEMBL2094268) are members of the G-protein coupled receptor 1 family. There are no known 3D structures for these particular proteins though, however there are now several relevant homologous structures of other members of the family (see here for a current list of representative rhodopsin-like GPCR structures).

The -melteon USAN/INN stem covers selective melatonin receptor agonists. Tasimelteon is the second approved agent in this class, following the approval of Takeda's Ramelteon in 2005. Contrary to its predecessor, tasimelteon is not currently indicated to treat insomnia, and has received orphan-product designation by the FDA. Agomelatine is another member of this class, but only approved in Europe (PMID: 18673165).


Tasimelteon (IUPAC Name: N-[[(1R,2R)-2-(2,3-dihydro-1-benzofuran-4-yl)cyclopropyl]methyl]propanamide; Canonical smiles: CCC(=O)NC[C@@H]1C[C@H]1c2cccc3OCCc23; ChEMBL: CHEMBL2103822; PubChem: 10220503; ChemSpider: 8395995; Standard InChI Key: PTOIAAWZLUQTIO-GXFFZTMASA-N) is a synthetic small molecule , with a molecular weight of 245.3 Da, 2 hydrogen bond acceptors, 1 hydrogen bond donor, and has an ALogP of 2.2. The compound is therefore fully compliant with the rule of five.

Tasimelteon is available as oral capsules and the recommended daily dose is one single capsule of 20 mg, taken before bedtime, at the same time every night. The peak concentration (Cmax) is reached at 0.5 to 3 hours after fasted oral administration, and at steady-state in young healthy subjects, the apparent oral volume of distribution (Vd/F) is approximately 56-126 L. Tasimelteon should not be administered with food, since food decreases its bioavailability, lowering the Cmax by 44%, and delaying the Tmax by approximately 1.75 hours. At therapeutic concentrations, tasimelteon is strongly bound to plasma proteins (90%).

The primary enzymatic systems involved in the biotransformation of tasimelteon in the liver are CYP1A2 and CYP3A4. Therefore, co-administration of tasimelteon with inhibitors of CYP1A2 and CYP3A4 or inducers of CYP3A4 may significantly alter the plasma concentration of tasimelteon. Metabolism of tasimelteon consists primarily of oxidation at multiple sites and oxidative dealkylation resulting in opening of the dihydrofuran ring followed by further oxidation to give a carboxylic acid. Phenolic glucuronidation is the major phase II metabolic route. Following oral administration of radiolabeled tasimelteon, 80% of total radioactivity is excreted in urine and approximately 4% in feces. The mean elimination half-life (t1/2) for tasimelteon is 1.3 ± 0.4 hours.

The license holder for HetliozTM is Vanda Pharmaceuticals, and the full prescribing information can be found here.

Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser