Skip to main content

Ligand-based target predictions in ChEMBL



In case you haven't noticed, ChEMBL_18 has arrived. As usual, it brings new additions, improvements and enhancements both on the data/annotation, as well as on the interface. One of the new features is the target predictions for small molecule drugs. If you go to the compound report card for such a drug, say imatinib or cabozantinib, and scroll down towards the bottom of the page, you'll see two tables with predicted single-protein targets, corresponding to the two models that we used for the predictions. 


 - So what are these models and how were they generated? 

They belong to the family of the so-called ligand-based target prediction methods. That means that the models are trained using ligand information only. Specifically, the model learns what substructural features (encoded as fingerprints) of ligands correlate with activity against a certain target and assign a score to each of these features. Given a new molecule with a new set of features, the model sums the individual feature scores for all the targets and comes up with a sorted list of likely targets with the highest scores. Ligand-based target prediction methods have been quite popular over the last years as they have been proved useful for target-deconvolution and mode-of-action prediction of phenotypic hits / orphan actives. See here for an example of such an approach and here for a comprehensive review.


 - OK, and how where they generated?

As usual, it all started with a carefully selected subset of ChEMBL_18 data containing pairs of compounds and single-protein targets. We used two activity cut-offs, namely 1uM and a more relaxed 10uM, which correspond to two models trained on bioactivity data against 1028 and 1244 targets respectively. KNIME and pandas were used for the data pre-processing. Morgan fingerprints (radius=2) were calculated using RDKit and then used to train a multinomial Naive Bayesian multi-category scikit-learn model. These models then were used to predict targets for the small molecule drugs as mentioned above. 


 - Any validation? 

Besides more trivial property predictions such as logP/logD, this is the first time ChEMBL hosts non experimental/measured data - so this is a big deal and we wanted to try and do this right. First of all, we did a 5-fold stratified cross-validation. But how do you assess a model with a many-to-many relationship between items (compounds) and categories (targets)? For each compound in each of the 5 20% test sets, we got the top 10 ranked predictions. We then checked whether these predictions agree with the known targets for that compound. Ideally, the known target should be correctly predicted at the 1st position of the ranked list, otherwise at the 2nd position, the 3rd and so on. By aggregating over all compounds of all test sets, you get this pie chart:


This means that a known target is correctly predicted by the model at the first attempt (Position 1 in the list of predicted targets) in ~69% of the cases. Actually, only 9% of compounds in the test sets had completely mis-predicted known targets within the top 10 predictions list (Found above 10). 

This is related to precision but what about recall of know targets? here's another chart:



This means that, on average, by considering the top 10 most likely target predictions (<1% of the target pool), the model can correctly predict around ~89% of a compound's known single protein targets. 

Finally, we compared the new open source approach (right) to an established one generated with a commercial workflow environment software (left) using the same data and very similar descriptors:


If you manage to ignore for a moment the slightly different colour coding, you'll see that their predictive performance is pretty much equivalent.

 - It all sounds good, but can I get predictions for my own compounds?

We could provide the models and examples in IPython Notebook on how to use these on another blog post that will follow soon. There are also plans for a publicly available target prediction web service, something like SMILES to predicted targets. Actually, if you would be interested in this, or if you have any feedback or suggestions for the target prediction functionality, let us know

George

Comments

Unknown said…
Very nice post, cheers!
Unknown said…
Any thoughts on the domain of validity in chemical space of these models? Do you expect them to work well across all of chembl, and if not can you specify what compounds they will fail on?
Unknown said…
Thank You for the very interesting work! I have some questions. First of all, i don't quite understand your validation technique. For example: a compound has 3 targets. Target 1 was found at the first position; target 2 was found at the second position and target 3 was not found in top 10 list of predictions. What did you do exactly in similar cases? Second, how many compounds are there in your training set?

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser