Skip to main content

An overview and invitation to contribute to ChEMBL curation with PPDMs

PPDMs has been in the making for more than a year and is a follow-up on a conference paper we published in 2012. As in 2012, our objective is to map small molecule binding sites to protein domains, the structural units that form recurring building blocks in the evolution of proteins. An application note describing PPDMs is just out in Bioinformatics.

Mapping small molecule binding to protein domains

The mapping facilitates the functional interpretation of small molecule-protein interactions - if you understand which domain in a protein is targeted, you are in a better position to anticipate the downstream effect.  Mapping small molecule binding to protein domains also provides a technical advantage to machine-learning approaches that incorporate protein sequence information as a descriptor to predict small molecule bioactivity. Reducing the sequence descriptor to the part that mediates small molecule binding increases the informative content of the descriptor. This is best exemplified by the domain-poisoning problem, illustrated below.
Result of a hypothetical query using as input the rat Tyrosine-protein phosphatase Syp (P35235) - and one of the hits, retrieved from a BLAST query against the ChEMBL target dictionary - the rat Tyrosine-protein kinase SYK (Q64725). The significant e-value for this query results from high scoring alignments of the SH2 domains. At the same time, the overlap between small molecules binding both proteins is expected to be low.

A simple heuristic

For individual experiments, it is often quite trivial to decide which domain was targeted. For example, medicinal chemists know whether their compound is a kinase inhibitor or one of a handful of SH2 inhibitors. This knowledge, while easily gleaned by the expert, is implicit and cannot be accessed programmatically. Hence we were motivated to implement a solution that could achieve this across as many measured bioactivities as possible.

Our initial implementation of mapping small molecules to protein domains consisted of a simple heuristic: Identify domains with known small molecule interaction and use these domains as a look-up when mapping measured bioactivities to protein domains. This process is illustrated in the figure below.

A catalogue of validated domains was extracted from assays against single-domain proteins (step 1, 2) and projected onto measured bioactivities in ChEMBL (step 3). Three possible outcomes are: i) A successful mapping if exactly one of the Pfam-A domain models from the catalogue matches the sequence; ii) No mapping if none of the Pfam-A domain models from the catalogue match the sequence; iii) A conflicting mapping if multiple domain models from the catalogue match the sequence.
Despite its simplicity, this method works surprisingly well, owing to the fact that protein domains that are relevant to drug discovery are prioritised in Pfam-A model curation. Another factor that contributes here is the conservative route taken by many drug discovery projects that focus on targets that are in well characterised protein families. However, as illustrated by the cases labelled ii) and iii), some constellations are not covered by the simple heuristic.

A public platform to review and improve mappings


Measured activities in ChEMBL falling into category iii) from the illustration above amount to only a fraction of the total but often reflect interesting biology. DHFR-TS for example is a multi-functional enzyme combining both a DHFR and Thymidylate_synt domain that occurs in the group of bikonts, which includes Trypanosoma and Plasmodium. In humans (and all metazoa), these domains occur as separate enzymes.
Small molecule inhibitors exist for both domains, DHFR (yellow, with Pyrimethamine) and Thymidylate synthase (blue, with Deoxyuridine monophosphate).
We built PPDMs as a platform to resolve such cases. PPDMs aggregates information that supports manual mapping assignments based on medicinal chemistry knowledge. New mappings can be  committed to the PPDMs logs and then transferred to the ChEMBL database in future releases.

The Conflicts section on the website summarises conflicts (cases that correspond to category iii as discussed above) that were encountered when the mapping was applied to measured activities in the ChEMBL database and offers an interface to resolve them.

The Evidence section provides the full catalogue of domains for which we found evidence of small molecule binding. Evidence for the majority of domains in this list is provided in the form of measured bioactivities in ChEMBL, while in a few cases we provide a reference to the literature. These are cases where well-known domains occur exclusively in multi-domain architectures, such as 7tm_2 and 7tm_3. The catalogue can be downloaded in full from this section.

PPDMs also provides logs of individual assignments - these can be queried by date, user and comments left when the assignment was made. A log of all assigned mappings can be downloaded from this section. Another way to review assigned mappings is through the Resolved section, where assignments are grouped by domain architecture.

We invite everyone with an interest in the matter to sign up with PPDMs, whether it's simply for playing around, resolving remaining conflicts, or reviewing existing assignments.  Please get in touch and we'll sort out a login for you!

felix

Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser