Skip to main content

Using autoencoders for molecule generation

Some time ago we found the following paper https://arxiv.org/abs/1610.02415 so we decided to take a look at it and train the described model using ChEMBL.

Lucky us, we also found two open source implementations of the model; the original authors one https://github.com/HIPS/molecule-autoencoder and https://github.com/maxhodak/keras-molecules. We decided to rely on the last one as the original author states that it might be easier to have greater success using it.

What is the paper about? It describes how molecules can be generated and specifically designed using autoencoders.

First of all we are going to give some simple and not very technical introduction for those that are not familiar with autoencoders and then go through a ipython notebook showing few examples of how to use it.

  1. Autoencoder introduction


Autoencoders are one of the many different and popular unsupervised deep learning algorithms used nowadays for many different fields and purposes. These work with two joint main blocks, an encoder and a decoder. Both blocks are made of neural networks.
In classical cryptography the cryptographer defines an encoding and decoding function to make the data impossible to read for those people that might intercept the message but do not have the decoding function. A classical example of this is the Caesar’s cipher https://en.wikipedia.org/wiki/Caesar_cipher .

However using autoencoders we don’t need to set up the encoding and decoding functions, this is just what the autoencoder do for us. We just need to set up the architecture of our autoencoder and the autoencoder will automatically learn the encoding and decoding functions minimizing a loss (also called cost or objective) function in a optimization algorithm. In an ideal world we would have a loss of 0.0, this would mean that all data we used as an input is perfectly reconstructed after the encoding. This is not usually the case :)

So, after the encoding phase we get a intermediate representation of the data (also called latent representation or code). This is why it’s said that autoencoders can learn a new representation of data.

Two most typical scenarios using autoencoders are:

  1. Dimensionality reduction: Setting up a bottleneck layer (layer in the middle) with lower dimensionality than the input layer we get a lower dimensionality representation of our data in the latent space. This can be somehow compared using classic PCA. Differences between using autoencoders and PCA is that PCA is purely linear, while autoencoders usually use non-linear transfer functions (multiple layers with relu, tanh, sigmoid... transfer functions). The optimal solution for an autoencoder using only linear transfer functions is strongly related to PCA. https://link.springer.com/article/10.1007%2FBF00332918

  1. Generative models: As the latent representation (representation after encoding phase) is just an n-dimensional array it can be really tempting to artificially generate n-dimensional arrays and try decode them in order to get new items (molecules!) based on the learnt representation. This is what we will achieve in the following example.

  1. Model training


Except RNN, most machine/deep learning approaches require of a fixed length vector as an input. The authors decided to take smiles no longer of 120 characters for a further one hot encoding representation to feed the model. This only left out less than 3% of molecules in ChEMBL. All of them above 1000 dalton.

We trained the autoencoder using the whole ChEMBL database (except that 3%), using a 80/20 train/test partition with a validation accuracy of 0.99.

  1. Example


As the code repository only provided a model trained with 500k ChEMBL 22 molecules and training a model against ChEMBL it’s a quite time expensive task we wanted to share with you the model we trained with whole ChEMBL 23 and a ipython notebook with some basic usage examples.

To run locally the notebook you just need to clone the repository, create a conda environment using the provided environment.yml file and run jupyter notebook.

cd autoencoder_ipython
conda env create -f environment.yml
jupyter notebook


The notebook covers simple usage of the model:

  • Encoding and decoding a molecule (aspirin) to check that the model is working properly.
  • Sampling latent space next to aspirin and getting auto-generated aspirin neighbours(figure 3a in original publication), validating the molecules and checking how many of them don’t exist in ChEMBL.
  • Interpolation between two molecules. Didn’t worked as well as in the paper.

  1. Other possible uses for this model


As stated on the original paper, this model can be also used to optimize a molecule given a desired property AlogP, QED...

Latent representations of molecules can be also used as structural molecular descriptors for target predictions algorithms.
Most popular target prediction algorithms are using fingerprints. Fingerprints have an obvious loss of structure information; molecule can’t be reconstructed from its fingerprint representation. As latent representation is saving all 2D molecule structural information in most cases (0.99 accuracy on ChEMBL test set)  we also believe that it may be used to improve fingerprint based target prediction algorithms accuracy.

Hope you enjoy it!

Eloy.


Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser