Skip to main content

ChEMBL tissues: Increasing depth, breadth and accuracy of annotations



Our current tissue annotation efforts have been on increasing the breadth and depth of the tissue effort first started in ChEMBL 22. The figure above represents the increased depth and coverage from that initial point till now. 

We continue to use a suite of tissue ontologies namely: Uberon, Experimental Factor Ontology (http://www.ebi.ac.uk/ols/ontologies/efo), CALOHA (ftp://ftp.nextprot.org/pub/current_release/controlled_vocabularies/caloha.obo) and Brenda Tissue Ontology ((http://www.ebi.ac.uk/ols/ontologies/bto)  to identify assays where the tissue is the assay system. We have increased the detail of information we capture to reflect the more granular tissues mentioned in the assays such as 'Popliteal lymph node' and 'Substantia nigra' pars compacta where previously the higher level term ‘lymph node’ and ‘Substantia nigra’ might have been captured.

Plasma based assays

We have recently focused annotation efforts on plasma based assays  in response to end user interest in this assays as well as acknowledging the general prevalence of plasma as an assay system for many functional/ADME assays.

Assays with multiple tissue types
We have also increased tissue curation of bioassays whose measurements are recorded across multiple tissues in a single assay e.g ‘Kidney/Liver’, ‘Heart/Liver’. In these cases, bespoke entries are created in the Tissue Dictionary, representing the tissue combination.
 
Ongoing improvements to tissue curation

·      These newly created tissue targets and assays annotated with these will be available in the next ChEMBL release (ChEMBL 24).
·      Our future web interface tissue search functionality will also make use of hierarchies inherent in the tissue ontologies to retrieve the more granular tissue terms on searching with a higher level term. An example would be that a tissue search for a high level term would include child terms of the higher level term e.g  A search for assays annotated with the tissue ‘compound eye’ UBERON:0000018 should also ideally retrieve assays annotated with direct children of this higher level term e.g ommatidium (UBERON:0000971).
·      The nature of ontological terms is such that species differences may not always be abundantly clear where single tissue term is used across different taxonomic groups to describe tissues that perform the same function in the different species but have clear anatomical differences. An example being the term eye which refers to the ‘compound eye’ UBERON:0000018 found in insects vs ‘camera type eye’ UBERON:0000019 as found in humans. We plan to use taxonomic constraint information to disambiguate cases like these and improve the correctness of mappings.
 
For queries and questions on tissue annotation-related matters please contact our help desk chembl-help@ebi.ac.uk

Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser