Skip to main content

New Drug Warnings Browser

As mentioned in the announcement post of ChEMBL 29, a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL (Compounds, Targets, Activities, etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below.

More visible buttons to link to other entities

This functionality is already available in the old entity browsers, but the button to use it is not easily recognised.

In the new version, the buttons are more visible.



By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any.





Additionally, the process of creating the join query is now handled completely by the backend, this will make it faster and will allow it to handle more items in the future. 

Improved visualization of the download process

When the user triggers a download, the visualization of the process of creating the final file has been improved.


Improved filtering capabilities

Many filtering capabilities have been improved with the Drug Warnings Browser. The histogram filters  will now always show a bar for ‘null’ values, so the user can always know how many items in the dataset have a null value for the property being shown. 


For the text-based properties, users can now search and filter for specific values in the dataset. In the following example, the user can search for terms that start with ‘Cardio’ in the values of the property Warning Class in the dataset:


The matching term can be used to filter out the data.


By clicking on the 3 dots button on the histograms, users can change the presentation of the histogram.




The filters for the number-based properties now allow users to filter by a range. The absolute minimum and maximum values are calculated automatically from the values found in the dataset for that current property.


Custom Filtering

Users can now apply custom filters to the dataset, apart from the ones provided by default. Users can filter the data in more complex ways than the default provided by the predefined filters. To use them, click on the ‘Custom Filtering’ button. 



Clicking on the button will open a panel that indicates whether custom filters are being applied. To edit the custom filters, click on the 'Edit Button’.


The menu that opens has 2 main sections. The section to the left shows the custom filter being applied and allows to edit it. The section to the right provides a query builder that helps users to build queries for the dataset. The custom queries are query strings of Elasticsearch, here you can find more information about the query strings.



To help users understand the structure of the data, there is a dialog that shows the available properties in the dataset.




Also some examples are available for users to apply and see how the custom filters can be created. 





The query builder section helps users to create custom filters by using a graphical interface. If auto-paste is activated, the query will be pasted to the editor at the same time as it is created. 



When a custom filter is being applied, an icon will indicate it when the menu is closed.



Future Plans

The Drug Warnings Browser was created to improve these 'entity browser of pages in ChEMBL. The plan is to replace the other entity browsers with the new version gradually. If you have some feedback or want to report a bug, please contact us: chembl-help@ebi.ac.uk (See also this page for more information)





Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser