Skip to main content

2010 New Drug Approvals - Pt. XIV - Dabigatran etexilate (Pradaxa)



ATC Code: B01AE07

Dabigatran etexilate has been approved by the FDA on October 19th 2010. Dabigatran etexilate (also known as BIBR-1048 for Dabigatran etexilate and BIBR-953 for Dabigatran) is approved for the treatment of patients with atrial fibrillation at risk of embolism or stroke. Dabigatran etexilate is a first-in-class (for the US) oral drug preventing blood clotting and stroke by direct inhibition of thrombin and is marketed under the trade name Pradaxa in Europe and the US, and Pradax in certain other territories. In Europe, an earlier oral direct thrombin inhibitor Xemelagatran (trademark:Exanta trademark:Exarta also known as H376/95) was approved, but subsequently was withdrawn due to commercial and perceived safety issues.

The formation of blood clots in the circulation can cause embolism or stroke (or CVA) if other risk factors are present.  Depending on the number of risk factors, the risk of suffering a stroke increases up to 7-fold in patients with atrial fibrillation. Patients with atrial fibrillation are therefore often treated with the anticoagulant warfarin (ChEMBL: 494165) to prevent the formation of blood clots, Warfarin is a drug with a poor therapeutic index, and also shows substantial intra-patient variability due to underlying genetic differences, with subsequent required regular patient monitoring.


Dabigatran etexilate is converted to the active drug Dabigatran. It inhibits blood clotting through direct inhibition of thrombin (Uniprot: P00734) and has a larger therapeutic window than warfarin (which is an irreversible inhibitor of vitamin K epoxide reductase). Thrombin is a key serine protease in the blood clotting cascade, activating coagulation factors Factor V, Factor VIII, Factor XI and Factor XIII as well as cleaving fibrinogen and thus transforming it to the blood clot forming fibrin (also known as Factor Ia) (Uniprot: P02679). There are many known structures of thrombin, both in prothrombin and mature thrombin forms (for example see PDBe:2bvs).

Thrombin is a trypsin-like serine proteinase (Pfam:PF00089), and cleaves after arginine (and lysine) residues at the P1 position in substrates; Dabigatran is a substrate mimic (a peptidomimetic), with the phenylamidine mimicking the arginine sidechain.

Upon absorpotion, Dabigatran etexilate is readily metabolized to the active drug Dabigatran by ester hydrolysis at two distinct positions (therefore Dabigatran is dosed as a double prodrug). The charged groups of Dabigatran (the amidine and carboxylic acid) are poorly absorbed across membranes, and therefor the lipophilic ester and carbamate are added to mask these groups during oral dosing and absorption. Dabigatran is further metabolized to four different acyl glucuronides which are equally active as thrombin inhibitors. The absolute oral biovailability of Dabigatran (dosed as the prodrug) is 3-7%. The fraction of dabigatran bound to plasma proteins (ppb) is ~35% and volume of distribution (Vd) is 50-70L, clearance is primarily renal with a half-life (t1/2) of 12-14 hours.

Dabigatran etexilate is recommended for twice daily administration of 300mg (in two 150mg doses).





SMILES:
CCCCCCOC(=O)N=C(N)c1ccc(NCc2nc3cc(ccc3n2C)C(=O)
N(CCC(=O)OCC)c4ccccn4)cc1
 
InChI:
1S/C34H41N7O5/c1-4-6-7-10-21-46-34(44)39-32(35)24-12-15-26(16-
13-24)37-23-30-38-27-22-25(14-17-28(27)40(30)3)33(43)41(20-18-
31(42)45-5-2)29-11-8-9-19-36-29/h8-9,11-17,19,22,37H,4-7,10,18,20-
21,23H2,1-3H3,(H2,35,39,44) 
 
Dabigatran etexilate is marketed under the trade name Pradaxa by
Boehringer Ingelheim.
 
Full prescribing information can be found here. 
 

Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser