Skip to main content

2010 New Drug Approvals - Pt. XVII- Eribulin Mesylate (Halaven)





ATC code (partial): L01C

On November 15th, 2010, the FDA approved Eribulin Mesylate (ResearchCode:E-7389) under the trade name Halaven (TradeMark:Halaven). It is indicated for for the treatment of patients with late stage, metastatic breast cancer who have previously received at least two chemotherapeutic regimens for the treatment of metastatic disease. Phase III trials showed that patients survived a median of 2.5 months longer than patients treated with other current alternatives. Eribuln is a synthethic analogue of halichondrin B, a cytotoxic polyether macrolide marine natural product.

The mechanism of action of Eribulin is anti-mitotic and is mediated via tubulin binding, where it leads to G2/M block in the the cell-cycle; after prolonged stalling in this state, cells enter apoptosis and are then cleared.


Eribulin is a large (Mwt 729.9 for Eribulin and 826.0 for the mesylate salt) synthetic compound (an analogue of halichondrin B) an IUPAC name of the structure is 11,15:18,21:24,28­ Triepoxy-7,9-ethano-12,15-methano-9H,15H-furo[3,2-i]furo[2',3':5,6]pyrano[4,3­ b][1,4]dioxacyclopentacosin-5(4H)-one, 2-[(2S)-3-amino-2-hydroxypropyl]hexacosahydro-3­ methoxy-26-methyl-20,27-bis(methylene)-, (2R,3R,3aS,7R,8aS,9S,10aR,11S,12R,13aR,13bS,15S,18S,21S,24S,26R,28R,29aS)-, methanesulfonate (salt). The most striking part of the structure is the highly fused, rigid ring system, as you would expect, the synthesis is complicated. The structure contains many of the classical features of natural products - a high number and fraction of defined chiral centers, a high ratio of oxygens to nitrogens, and a high ring count.

The recommended dosing is 1.4mg/m2 as two intravenously delivered doses, separated by seven days, repeated after a further two weeks. An average adult human has a skin surface area of ca. 1.8 m2, so this would equate to a single dose of ~3 umol)  The mean half-life of Eribulin is ~40 hr, with a mean volume of distribution of ~80 L/m2, and a mean clearance of ~1.8 L/hr/m2. Plasma protein binding is around 58%. Eribulin is metabolically stable and is largely unmetabolised, with the majority of the dosed drug being excreted as the dosed form in the feces.

Eribulin binds at (or near) the vinca domain of tubulin, a region that is located at the interface of two tubulin heterodimers when arranged end to end and overlaps the exchangeable GTP site on β-tubulin (Bai et al). β-tubulin is small family of related human proteins (PFAM:PF03953, HOMSTRAD:tubulin, and UniProt:P07437 for a specific member) that are key components of microtubules. There are multiple isoforms of β-tubulin e.g. "tubulin-beta1" , ChEMBLDB ID: CHEMBL1915, canSAR:link; and "tubulin-beta5", ChEMBLDB_ID:CHEMBL5444, canSAR link. Multiple 3-D structures are available for alpha-/beta-tubulins including PDBe:1tub. Tubulins are the target of several other classes of anticancer drugs, such as Paclitaxel (aka taxol) and Vinblastine (both similarly cytotoxic natural products)

 
NAME="Eribulin Mesylate"
TRADEMARK_NAME="Halaven"
ATC_code= L01C
SMILES="CO[C@@H]([C@@H](C[C@H](O)CN)O1)[C@@H](CC(C[C@@H]2O[C@@]([C@H]3C4[C@@]([C@@H]5[C@@H](C6)O4)([H])O7)([H])[C@]7([H])CC2)=O)[C@@H]1C[C@@H](O[C@@H](CC[C@H]8C(C[C@H](CC[C@]6(O5)O3)O8)=C)C[C@H]9C)C9=C.CS(O)(=O)=O"
InChI="/C40H59NO11.CH4O3S/c1-19-11-24-5-7-28-20(2)12-26(45-28)9-10-40-17-33-36(51-40)37-38(50-33)39(52-40)35-29(49-37)8-6-25(47-35)13-22(42)14-27-31(16-30(46-24)21(19)3)48-32(34(27)44-4)15-23(43)18-41;1-5(2,3)4/h19,23-39,43H,2-3,5-18,41H2,1,4H3;1H3,(H,2,3,4)/t19-,23+,24+,25-,26+,27+,28+,29+,30-,31+,32-,33-,34-,35+,36+,37+,38?,39+,40+;/m1./s1/i1-12,2-12,3-12,4-12,5-12,6-12,7-12,8-12,9-12,10-12,11-12,12-12,13-12,14-12,15-12,16-12,17-12,18-12,19-12,20-12,21-12,22-12,23-12,24-12,25-12,26-12,27-12,28-12,29-12,30-12,31-12,32-12,33-12,34-12,35-12,36-12,37-12,38-12,39-12,40-12,41-14,42-16,43-16,44-16,45-16,46-16,47-16,48-16,49-16,50-16,51-16,52-16;1-12,2-16,3-16,4-16,5-32"
ChemDraw=eribulin.cdx

Full prescribing information here The license holder for Halaven™ is Eisai Inc.

Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser