Skip to main content

New Drug Approvals 2012 - Pt. XXX - Crofelemer (Fulyzaq TM)



ATC code: not yet assigned
Wikipedia: Crofelemer

On December 31 2012, the FDA approved Crofelemer for the treatment of diarrhea caused by antiretroviral medication regimens taken by patients with HIV/AIDS.

Diarrhea is a frequent adverse effect of antiretroviral medication - however, it can also be caused by secondary infections of the gastrointestinal tract or the virus itself. The loss of fluids incurred by diarrhea can lead to dehydration and electrolyte imbalance. As a side-effect of antiretroviral medication it also reduces patient compliance with a prescribed medication regimen.

Crofelemer alleviates the symptoms of HIV-associated diarrhea by limiting the amount of chloride ions that are pumped into the intestinal lumen, thus also retaining sodium ions and water. Crofelemer is a natural product oligomer that is not orally bioavailable but acts locally on the intestinal surface. It was shown to inhibit two distinct intestinal chloride channels expressed in the luminal membrane of gut epithelial cells. One of them, the cystic fibrosis transmembrane conductance regulator (CFTR, Uniprot: P13569, CHEMBL4051) is a member of the ABS transporter family, the other is a calcium-activated chloride channel (CaCC) and is called Anoctamin-1 (TMEM16A, Uniprot: Q5XXA6). Anoctamin-1 is currently the only known CaCC expressed at the luminal membrane of gut epithelial cells but crofelemer might also inhibit other CaCCs.



Crofelemer is extracted from the red latex of the South American tree Croton lechleri and is an amorphous red-brown powder. The oligomer is a random sequence of (+)-catechin, (-)-epicatechin, (+)gallocatechin and (-)-epigallocatechin monomers (on average 5 to7.5) and average mass of 1500Da to 2300Da.

Crofelemer is dosed twice-daily in delayed release tablets containing 125mg of the active ingredient. It is practically not absorbed into the blood and typical pharmacokinetic parameters are thus not applicable.

Crofelemer was initially developed by Shaman Pharmaceuticals and then continued by Napo Pharmaceuticals (Forbes has a short article on Crofelemer's development). At the moment, Salix Pharmaceuticals holds a license for marketing in Japan, North America and Europe while Glenmark Pharmaceuticals has exclusive rights to marketing in 140 developing countries including India (but excluding China).

The commercial name for crofelemer is Fulyzaq.


Comments

Unknown said…
please revise the labels,
you,ve stated it's taken orally but the label says it's taken topically!!
jpo said…
Hi,

This is a complicated one - the drug is dosed orally, but is not absorbed through the gut, and therefore acts topically (on the lining of the gut). The basic feature we are trying to capture here is whether the drug is absorbed after oral dosing achieving therapeutic effect through systemic exposure. However, like another recent drug asenapine, it is a specific complicated case.

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser