Skip to main content

New Drug Approvals 2012 - Pt. XXXIII - Apixaban (ELIQUIS®)


ATC code : B01AF02
Wikipedia : Apixaban

On December 28, FDA approved Apixaban (Trade Name: ELIQUIS®; ChEMBLCHEMBL231779KEGGD03213; ChemSpider8358471; DrugBankDB07828; PubChemCID 10182969) as an anticoagulant for prevention of venous thromboembolism and related events, indicated to reduce the risk of stroke and systemic embolism in patients with non-valvular atrial fibrillation. 

Atrial fibrillation (AF) is most common cardiac arrhythmia (irregular heart beat). There are many classes of AF according to American College of Cardiology (ACC), American Heart Association (AHA) and the European Society of Cardiology (ESC) one of which is non-valvular AF - absence of rheumatic mitral valve disease, a prosthetic heart valve, or mitral valve repair (AF which not caused by a heart valve problem). Usually AF increases the degree of stroke risk, can be up to seven times that of the average population. AF is one of the major cardiogenic risk factors for stroke. For instance, patients with inappropriate or abnormal blood clotting (coagulation disorder) will result in clot formation in heart which can easily find their way into the brain, resulting in stroke.

Coagulation (thrombogenesis) is the process by which blood forms clots. Coagulation cascade has two pathways which lead to fibrin formation, they are intrinsic pathway and extrinsic pathway. The pathways are a series of reactions, in which a zymogen of a serine protease and its glycoprotein co-factor are activated to become active components that then catalyze the next reaction in the cascade, ultimately resulting in cross-linked fibrin. Apixaban belongs to Direct factor Xa inhibitors ('xabans') class of anticoagulant drugs, which directly acts on Factor X (FX) in the coagulation cascade without antithrombin as mediator. 

Apixaban is reversible and selective active site inhibitor of Factor Xa (FXa) . It does not require antithrombin III for antithrombotic activity. Apixaban inhibits free and clot-bound FXa, and prothrombinase activity. Apixaban has no direct effect on platelet aggregation, but indirectly inhibits platelet aggregation induced by thrombin. By inhibiting FXa, apixaban decreases thrombin generation and thrombus development.


The PDBe entry (PDBe : 2p16) for the crystal structure for human Factor X (chain A & chain L) in complex with Apixaban (blue-green - molecule shaped) is shown above.


IUPAC Name : 1-(4-methoxyphenyl)-7-oxo-6-[4-(2-oxopiperidin-1-yl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide
Canonical SMILES : COc1ccc(cc1)n2nc(C(=O)N)c3CCN(C(=O)c23)c4ccc(cc4)N5CCCCC5=O
Standard InChI : 1S/C25H25N5O4/c1-34-19-11-9-18(10-12-19)30-23-20(22(27-30)24(26)32)13-15-29(25(23)33)17-7-5-16(6-8-17)28-14-3-2-4-21(28)31/h5-12H,2-4,13-15H2,1H3,(H2,26,32)
Standard InChI Key : QNZCBYKSOIHPEH-UHFFFAOYSA-N

Apixaban is available for oral administration at doses of 2.5 mg and 5 mg. It displays prolonged absorption with bioavailability of ~50% for doses up to 10 mg. Plasma protein binding was estimated to be ~87% and Vss is ~21 liters. Apixaban is metabolized by mainly via CYP3A4 with minor contributions from CYP1A2, CYP2C8, CYP2C9, CYP2C19 and CYP2J2. Approximately 25% of Apixaban is recovered in urine and faeces. Despite a short clearance half-life about 6 hrs, apparent half-life is 12 hrs, due to prolonged absorption phase; renal excretion accounts to 27% of the clearance.

Apixaban comes with a boxed warning for risks and remedies while discontinuing drug. There is one other direct factor Xa inhibitor approved by FDA in 2011, Rivaroxaban (ChEMBL : CHEMBL198362, ATC code  : B01AX06, PubChem : CID6433119), was "first in class" FXa inhibitor (can be accessed by one of our old blog posts, here) which had similar boxed warning along with spinal/epidural hematoma in surgical settings.

The license holder is Bristol-Myers Squibb, and the product website is www.eliquisglobal.com.

Full prescribing information can be found here.

Ramesh

Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser