Skip to main content

New Drug Approvals 2013 - Pt. XVII - Macitentan (Opsumit ®)



ATC Code: C02KX (incomplete)
Wikipedia: Macitentan
ChEMBL: CHEMBL2103873

On October 13th the FDA approved Macitentan (trade name Opsumit ®) for the treatment of pulmonary arterial hypertension (PAH). Macitentan is an endothelin receptor antagonist (with affinities to both Endothelin ET-A (ETA) and Endothelin ET-B (ETB) receptor subtypes, similar in mechanism of action to the previously licensed drug Bosentan, CHEMBLID957).

Target(s)
The Endothelin receptor ET-A (ETA, CHEMBLID252 ; Uniprot P25101) and Endothelin receptor ET-B (ETB, CHEMBLID1785 ; Uniprot P24530) receptors mediate a number of physiological effects via the natural peptide agonist Endothelin-1 (ET1 , CHEMBL437472 ; Uniprot P05305). In addition to normal roles in supporting homeostasis, these effects can include pathologies such as inflammation, vasoconstriction, fibrosis and hypertrophy.

Macitentan acts as an antagonist for both receptors with both a high affinity and long residence time in human pulmonary arterial smooth muscle cells. Hence it counteracts vasoconstriction and relieves hypertension. One of the metabolites of Macitentan is also pharmacologically active at the ET receptors and is estimated to be about 20% as potent as the parent drug in vitro


Macitentan (CHEMBL2103873 ; Pubchem : 16004692 ) is a small molecule drug with a molecular weight of 588.3 Da, an AlogP of 3.67, 11 rotatable bonds, and 1 rule of 5 violation.

Canonical SMILES : CCCNS(=O)(=O)Nc1ncnc(OCCOc2ncc(Br)cn2)c1c3ccc(Br)cc3
InChi: InChI=1S/C19H20Br2N6O4S/c1-2-7-26-32(28,29)27-17-16(13-3-5-14(20)6-4-13)18(25-12-24-17)30-8-9-31-19-22-10-15(21)11-23-19/h3-6,10-12,26H,2,7-9H2,1H3,(H,24,25,27)

Dosage
10 mg once daily. Doses higher than 10 mg once daily have not been studied in patients with PAH and are not recommended.

Metabolism and Elimination 
Following oral administration, the apparent elimination half-lives of macitentan and its active metabolite are approximately 16 hours and 48 hours, respectively. Macitentan is metabolized primarily by oxidative depropylation of the sulfamide to form the pharmacologically active metabolite. This reaction is dependent on the cytochrome P450 (CYP) system, mainly CYP3A4 with a minor contribution of CYP2C19. It is interesting to note the presence of bromine atoms in two of the aryl rings, typically a lighter halogen, typically fluorine is used to block oxidative P450-mediated metabolism at these exposed aromatic positions.

At steady state in PAH patients, the systemic exposure to the active metabolite is 3-times the exposure to macitentan and is expected to contribute approximately 40% of the total pharmacologic activity. In a study in healthy subjects with radiolabeled macitentan, approximately 50% of radioactive drug material was eliminated in urine but none was in the form of unchanged drug or the active metabolite. About 24% of the radioactive drug material was recovered from feces.

Pregnancy
Macitentan may cause fetal harm when administered to a pregnant woman. Macitentan is contraindicated in females who are pregnant.

Hepatotoxicity
Other ERAs have caused elevations of aminotransferases, hepatotoxicity, and liver failure. Obtain liver enzyme tests prior to initiation of Macitentan and repeat during treatment as clinically indicated.

Hemoglobin Decrease 
Decreases in hemoglobin concentration and hematocrit have occurred following administration
of other ERAs and were observed in clinical studies with Macitentan. These decreases occurred
early and stabilized thereafter Initiation of Macitentan is not recommended in patients with severe anemia. Measure hemoglobin prior to initiation of treatment and repeat during treatment as clinically indicated.

Strong CYP3A4 Inducers / Inhibitors
Strong inducers of CYP3A4 such as rifampin significantly reduce macitentan exposure whereas concomitant use of strong CYP3A4 inhibitors like ketoconazole approximately double macitentan exposure. Many HIV drugs like ritonavir (CHEMBL163) are strong inhibitors of CYP3A4.

The license holder is Actelion Pharmaceuticals US the full prescribing information can be found here.

Comments

Popular posts from this blog

SureChEMBL Available Now

Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online. SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here . SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writi

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible? Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook! We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it. With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below: docker pull eloyfelix/rdkit_jupyter_cling docker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_cling open  http://localhost:9999/notebooks/rdkit_cling.ipynb  in a browser