Skip to main content

New Drug Approvals - Pt. XII - Dronedarone (Multaq)

Another drug reaching the market this year is Dronedarone (trade name Multaq), approved on July 1st. Dronedarone is a antiarrythmic agent indicated to reduce the risk of cardiovascular hospitalization in patients with a history of heart rhythm disorders. The drug is approved to be used in patients whose hearts have returned to normal rhythm or who will undergo drug or electric-shock treatment to restore a normal heart beat. Dronedarone is an antiarrythmic agent of unknown detailed mechanism of action (specifically it does not fit into one of the existing Vaughn Williams classification scheme), but is known to be a multi-channel blocker that affects calcium, potassium and sodium channels and also has anti-adrenergic receptor activity. Dronedarone (previously known by the research code SR33589) is a relatively large small molecule drug (Molecular Weight of 556.8 g.mol-1 for Dronedarone itself, and 593.2 g.mol-1 for the HCl salt), highly lipophilic and practically insoluble in water. Dronedarone has low systemic bioavailabity (~4%, increasing to ~15% if administrated with high fat meal, this low absolute oral bioavailability is due to extensive first-pass metabolism). Dronedarone has a volume of distribution of 1400L, and a high plasma protein binding of >98%. Dronedarone is extensively metabolized, mainly by CYP3A4, to the active N-debutyl metabolite and also to some inactive metabolites. The N-debutyl metabolite exhibits some pharmacologic activity but is much less potent than Dronedarone itself. Dronedarone is mostly excreted in the feces, mainly as metabolites. It has a plasma clearance of 130-150 L/hour and an elimination half-life of 13-19 hours. Recommended dosage is one tablet of 400 mg (equivalent to ca. 670 umol) twice a day, taken with morning and evening meals (see the higher bioavailability when taken with food discussed above). The full prescribing information can be found here.

Dronedarone has a boxed warning (colloquially known as 'black box').

The Dronedarone structure is N-{2-butyl-3-[4-(3-dibutylaminopropoxy)benzoyl]benzofuran-5-yl}methanesulfonamide. It contains an aryl sulfonamide and a tertiary amine. The amine is clearly basic in nature, but aryl sulphonamides are often weak acids, and are surprisingly common in drug structures. Dronedarone is a benzofuran derivative, chemically similar to Amiodarone, a widely used and early (discovered in 1961) class III antiarrhythmic agent, whose clinical use is often limited by a multitude of side effects.

Dronedarone canonical SMILES: O=S(=O)(Nc3cc1c(oc(c1C(=O)c2ccc(OCCCN(CCCC)CCCC)cc2)CCCC)cc3)C Dronedarone InChI: InChI=1/C31H44N2O5S/c1-5-8-12-29-30(27-23-25(32-39(4,35)36)15-18- 28(27)38-29)31(34)24-13-16-26(17-14-24)37-22-11-21-33(19-9-6-2)20 -10-7-3/h13-18,23,32H,5-12,19-22H2,1-4H3 Dronedarone InChIKey: ZQTNQVWKHCQYLQ-UHFFFAOYAL Dronedarone CAS registry: 141626-36-0 Dronedarone ChemDraw: Dronedarone.cdx

The license holder for Dronedarone is Sanofi-Aventis and the product website is


Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site: .  Please see ChEMBL_29 release notes for full details of all changes in this release: New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no