Skip to main content

Chembl_09 Schema - A Different View


The guys at the NCI Cactus blog have done a great job of rendering the new ChEMBL schema as released in ChEMBL_09. There are quite a few changes, and we have started to load/curate new data against this schema - so check with us if your analyses rely on something currently in there! Click on the above image for a large view.

Things will be fairly quiet at ChEMBL Manor next week - we have the annual ChEMBL training course which will keep us busy, and hopefully out of any trouble.

Comments

Thanx again for for tweet earlier about aminoglutethimide. Now, looking at the new scheme, and the ChEMBL content, I see it does it equally wrong as most other databases: the entry is marked as a single chemical graph (without stereo) rather than it being a racemic mixture. If it did, I would not have needed your tweet for the explanation :)

Now, ChEBI actually has a good mechanism for making the distinction (talk to Janna). What are the plans with ChEMBL in this respect? Will we see this corrected? It clearly affects QSAR modeling, as the assay activities are actually related to either one of the stereoisomers in the racemic mixture, or a mix of both. That said, QSAR descriptors will have to take either geometry to calculate 3D descriptors, and as such introduces needless uncertainty in the model.

(And, obviously, this also affects how I should represent things in RDF :)
jpo said…
We have some plans in progress for this. Things are never simple. since we need to catch things like d and l (so unknown but opposite) and trans across two adjacent stereocenters, etc. Just because a chemist publishes something without stereochem shown, doesn't necessarily mean it is racemic.

Our initial focus will be on annotating the issues, to aid interpretation and curation.

A further complication we have come to in the past is for some of the 'neglected' stereocenters, like sulphones. Finally, an interesting clinical candidate case we have corresponded with ChemSpider recently over is flesinoxan - where there are ambiguous links between the +/- and R/S.

I think an interesting area of chemoinformatics science at the moment, with quite a lot more potential is in the area of reduced representation (in contrast to ever more explicit enumeration and calculation). The potential to develop robust landscapes at a lower 'resolution' is quite exciting.

For calculating 3D descriptors, with undefined stereochemistry in lots of cases, or large numbers of possible enantiomers, coupled with large numbers of tautomers, and the problem of pKa prediction and assignment. I wish you the very best of luck.
Unknown said…
Is there more cross-linked information for the schema with respect to entries?
Example:
* What does assays.assay_type={A,B,F,U} stand for?
* Is is possible to expose a few example SQL queries somewhere?

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d