Skip to main content

New Drug Approvals 2011 - Pt. XXI Rivaroxaban (XareltoTM)






ATC code: B01AX06

On July 1st, FDA approved Rivaroxaban (trade name: Xarelto, Research code: BA-59-7939, NDA 022406), an anti-coagulant to prevent deep vein thrombosis (DVT) in patients with knee or hip replacement surgery. Rivaroxaban is the first orally applied direct inhibitor of Factor Xa (FXa), a key regulatory of the coagulation cascade. In DVT, a blood clot is formed which can dislodge and travel to the lungs, causing pulmonary embolism which can be potentially fatal.


Factor Xa (EC number 3.4.21.6, UniProt ID P00742, OMIM 613872) is a serine endopeptidase, cleaving prothrombin into its active form, thrombin, which then activates further downstream factors which ultimately lead to platelet activation and fibrin formation, clotting the damaged blood vessels. The sequence of Factor X is

>Factor X
MGRPLHLVLLSASLAGLLLLGESLFIRREQANNILARVTRANSFLEEMKKGHLERECMEE
TCSYEEAREVFEDSDKTNEFWNKYKDGDQCETSPCQNQGKCKDGLGEYTCTCLEGFEGKN
CELFTRKLCSLDNGDCDQFCHEEQNSVVCSCARGYTLADNGKACIPTGPYPCGKQTLERR
KRSVAQATSSSGEAPDSITWKPYDAADLDPTENPFDLLDFNQTQPERGDNNLTRIVGGQE
CKDGECPWQALLINEENEGFCGGTILSEFYILTAAHCLYQAKRFKVRVGDRNTEQEEGGE
AVHEVEVVIKHNRFTKETYDFDIAVLRLKTPITFRMNVAPACLPERDWAESTLMTQKTGI
VSGFGRTHEKGRQSTRLKMLEVPYVDRNSCKLSSSFIITQNMFCAGYDTKQEDACQGDSG
GPHVTRFKDTYFVTGIVSWGEGCARKGKYGIYTKVTAFLKWIDRSMKTRGLPKAKSHAPE
VITSSPLK

Factor X itself is synthesized as an inactive precursor, and is further processed into a mature form, consisting of a light and an "activated" heavy chain (=FXa, residues 235-488, bold in the above sequence, carrying a trypsin-like domain, Pfam PF00089) (green and red in the below picture, respectively). There is a plethora of experimentally solved structures available for FXa, and also a holostructure of FXa in complex with Rivaroxaban, PDBe:2w26.

 
Rivaroxaban (ChEMBL ID 198362, ATC code B01AX06, PubChem CID 6433119) has molecular weight of 435.9 Da, an ALogP of 1.8, 5 rotatable bonds, 6 hydrogen bond acceptors, 1 hydrogen bond donor, and is thus fully Rule-of-Five compliant. It is dosed as a pure (S)-enantiomer. Canonical Smiles, Smiles=Clc1ccc(s1)C(=O)NC[C@H]2CN(C(=O)O2)c3ccc(cc3)N4CCOCC4=O, Standard InChi, InChI=1S/C19H18ClN3O5S/c20-16-6-5-15(29-16)18(25)21-9-14-10-23(19(26)28-14)13-3-1-12(2-4-13)22-7-8-27-11-17(22)24/h1-6,14H,7-11H2,(H,21,25)/t14-/m0/s1. Rivaroxaban is known to have a sub-nanomolar (0.7 nM) IC50 to the active site of human FXa.


Xarelto is administered orally as a 10 mg tablet once daily for 12 or 35 days (after knee/hip replacement surgery, respectively), yielding ~23 umol of active substance per single dose. Most relevant risks connected to Xarelto treatment are serious and fatal bleeding.

It has been given a boxed warning for spinal/epidural hematoma in surgical settings. It has not been tested in pregnant women, nursing mothers, or pediatric settings; majority of participants in clinical trials were 65 years and over, and the efficacy of Xarelto in the elderly was found to be similar to that seen in younger patients. The effect of Xarelto lasts 8-12 hours, but FXa activity stays depleted during 24 hours, so a once-daily dose is sufficient.

It has high (80-100%) bioactivity and is rapidly absorbed, reaching Cmax at 2 to 4 hours. Its volume is distribution is Vss=50 L. Little metabolism is observed for rivaroxaban, with the majority of the dose excreted unchanged.

The USAN/INN name stem, -xaban of rivaroxaban, designates a FXa inhibitor. Alternative anticoagulants, inhibiting FXa indirectly, include Heparin (ChEMBL ID 526514), an activator of Antithrombin, which itself is a FXa inactivator; Warfarin (ChEMBL ID 1464), a vitamin K antagonist, vitamin K being required for FXa biosynthesis. However, numerous other direct FXa inhibitors are currently being developed, e.g. Apixaban (BMS-562247-01, ChEMBL ID 231779), Betrixaban (PRT-054021, ChEMBL ID 512351), Edobaxan (Du-176b), Eribaxaban (PD-348292), Fidexaban (ZK-807834), Otamixaban (XRP-0673), YM-150, YM-466, Letaxaban (TAK-442), and GW-813893.

Xarelto has been developed by Bayer Schering AG. In US, it will be marketed by Janssen Pharmaceuticals, Inc.

The product website can be found here, the full prescribing information, here.

Comments

Popular posts from this blog

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

ChEMBL 26 Released

We are pleased to announce the release of ChEMBL_26 This version of the database, prepared on 10/01/2020 contains: 2,425,876 compound records 1,950,765 compounds (of which 1,940,733 have mol files) 15,996,368 activities 1,221,311 assays 13,377 targets 76,076 documents You can query the ChEMBL 26 data online via the ChEMBL Interface and you can also download the data from the ChEMBL FTP site . Please see ChEMBL_26 release notes for full details of all changes in this release. Changes since the last release: * Deposited Data Sets: CO-ADD antimicrobial screening data: Two new data sets have been included from the Community for Open Access Drug Discovery (CO-ADD). These data sets are screening of the NIH NCI Natural Product Set III in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296183, DOI = 10.6019/CHEMBL4296183) and screening of the NIH NCI Diversity Set V in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296182, DOI = 10.601