Skip to main content

Integration of a filtered set of PubChem Bioassay data into ChEMBL.


A sub-set of the PubChem Bioassay data has been integrated into ChEMBL.

How is this sub-set defined ?
In PubChem, depositors may assign multiple result types to an assay. However, if an assay is deposited as a ‘confirmatory’ assay (defined as an assay where a range of SID concentrations have been tested, with a view to determining a measurement of potency), then one of the result types must be marked up as an ‘Active Concentration’ (AC) result type. Panel assays may contain many ‘AC’ result types, one per panel member. The AC result type is the calculated potency measurement from the data, and is typically an IC50, EC50, AC50, GI50 or Ki. In addition, the PubChem deposition process requires that each SID in an assay must be assigned a single ‘Activity Summary’, from a controlled vocabulary which includes ‘inactive’, ‘active’ and ‘inconclusive’.

Only assays containing ‘AC’ result types have been integrated into ChEMBL, and from these assays, only activity data and SIDs associated with ‘AC’ result types have been integrated. The ‘Activity Summary’ field in PubChem associated with each integrated activity is also captured and shown in the ‘Activity Comment’ field in ChEMBL. Panel assays are divided into separate assays in ChEMBL, one ChEMBL assay for each panel member.

How are structures normalized ?
An automatic ‘standardization’ of SID structures downloaded from PubChem is carried out prior to integration (using in house protocols). Standard inchis are generated from the standardized mol files, and used to normalize with existing ChEMBL structures. SIDs matching exactly on standard inchi to existing ChEMBL structures are assigned to the existing CHEMBLID (and the mol file already associated with the existing ChEMBL structure is used to represent the searchable structure for this CHEMBLID). Where no match to a standard inchi is achieved, the incoming SID is assigned to a new CHEMBLID, and the standardized mol file for the SID is used to represent the searchable structure. A very small number of SIDs (<0.1%) with standardized mol files that fail to produce valid standard inchis, or to load into a oracle symyx cartridge without errors, are each assigned a new CHEMBLID, and associated with a ‘null’ structure (ie: no mol file is associated with this new CHEMBLID).

How frequently is the integrated data updated ?
Updates are carried out every ChEMBL release cycle.

How are targets mapped ?
Mappings to ChEMBL targets for each integrated PubChem assay has been automated for the initial load. However, manual review of these mappings by expert curators may result in ongoing changes.

How do I filter my query results to exclude or include various data sources ?
Users who prefer to exclude the integrated PubChem data (or any other integrated external data set) from their ChEMBL web-interface searches can do so by clicking ‘Activity Source Filter’ next to the main ChEMBL search bar, and deselecting the sources not required in future searches. Note, however, that these deselections persist between browser sessions. Users querying ChEMBL database dumps directly using SQL, and wishing to achieve this same filtering, should inspect the ‘source’ table, and the foreign keys to this table in the ‘assays’ and ‘compound_records’ tables.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

ChEMBL webinar @ School of Chemoinformatics in Latin America

Recently, the ChEMBL team participated in the " School of Chemoinformatics in Latin America " which was kindly organized by José Medina-Franco and Karina Martinez-Mayorga (both at the National Autonomous University of Mexico). The event was very well attended with 1,181 registrants from 79 different countries. 57% of the participants attended from Latin America, 23% from Asia, and around 8% from Africa and Europe, respectively. 52% of the participants were students (undergraduate and graduate students). Distribution by country Distribution by role Participants could learn a bou t the ChEMBL database and UniChem. We covered different topics to answer these questions: • What is ChEMBL and how is it structured ? • Which data does ChEMBL contain ? • How is data extracted from scientic articles ? • How is the data in ChEMBL curated ? • How is drug ...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...