Skip to main content

New Drug Approvals 2012 - Pt. X - Avanafil (StendraTM)




ATC code: G04BE (partial)
Wikipedia: Avanafil


On April 27th, the FDA approved Avanafil (tradename: Stendra; Research Code: TA-1790), a phosphodiesterase 5 (PDE5) inhibitor for the treatment of erectile dysfunction (ED). ED is a sexual dysfunction characterized by the inability to produce an erection of the penis. The physiologic mechanism of penile erection involves the release of nitric oxide in the corpus cavernosum during sexual stimulation, which in turn activates the enzyme guanylate cyclase, resulting in increased levels of cyclic guanosine monophosphate (cGMP). cGMP produces relaxation of smooth muscle tissues, which in the corpus cavernosum results in vasodilation and increased blood flow. Avanafil (PubChem: CID9869929, ChemSpider: 8045620) enhances the relaxant effects of cGMP by selectively inhibiting PDE5 (ChEMBL: CHEMBL1827; Uniprot: O76074), an enzyme responsible for the degradation of cGMP.

Other PDE5 inhibitors are already available on the market and these include Sildenafil (approved in 1998; tradename: Viagra, Revatio; ChEMBL: CHEMBL192), Tadalafil (approved in 2003; tradename: Cialis; ChEMBL: CHEMBL779) and Vardenafil (approved in 2003; tradename: Levitra; ChEMBL: CHEMBL1520). These other PDE5 inhibitors are also approved for the treatment of pulmonary arterial hypertension (PAH).

PDE5 is an 875 amino acid-long enzyme (EC=3.1.4.35), belonging to the cyclic nucleotide phosphodiesterase family (PFAM: PF00233).

>PDE5A_HUMAN cGMP-specific 3',5'-cyclic phosphodiesterase
MERAGPSFGQQRQQQQPQQQKQQQRDQDSVEAWLDDHWDFTFSYFVRKATREMVNAWFAE
RVHTIPVCKEGIRGHTESCSCPLQQSPRADNSAPGTPTRKISASEFDRPLRPIVVKDSEG
TVSFLSDSEKKEQMPLTPPRFDHDEGDQCSRLLELVKDISSHLDVTALCHKIFLHIHGLI
SADRYSLFLVCEDSSNDKFLISRLFDVAEGSTLEEVSNNCIRLEWNKGIVGHVAALGEPL
NIKDAYEDPRFNAEVDQITGYKTQSILCMPIKNHREEVVGVAQAINKKSGNGGTFTEKDE
KDFAAYLAFCGIVLHNAQLYETSLLENKRNQVLLDLASLIFEEQQSLEVILKKIAATIIS
FMQVQKCTIFIVDEDCSDSFSSVFHMECEELEKSSDTLTREHDANKINYMYAQYVKNTME
PLNIPDVSKDKRFPWTTENTGNVNQQCIRSLLCTPIKNGKKNKVIGVCQLVNKMEENTGK
VKPFNRNDEQFLEAFVIFCGLGIQNTQMYEAVERAMAKQMVTLEVLSYHASAAEEETREL
QSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWIL
SVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGV
NNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI
LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAE
LVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCF
PLLDGCRKNRQKWQALAEQQEKMLINGESGQAKRN

Several crystal structures of PDE5 are now available. The catalytic domain of human PDE5 complexed with sildenafil is shown below (PDBe:1tbf)





Preclinical studies have shown that Avanafil strongly inhibits PDE5 (half maximal inhibitory concentration = 5.2 nM) in a competitive manner and is 100-fold more potent for PDE5 than PDE6, which is found in the retina and is responsible for phototransduction. Also, Avanafil has shown higher selectivity (120-fold) against PDE6 than Sildenafil (16-fold) and Vardenafil (21-fold), and high selectivity (>10 000-fold) against PDE1 compared with Sildenafil (380-fold) and Vardenafil (1000-fold). 

Avanafil has also been reported to be a faster-acting drug than Sildenafil, with an onset of action as little as 15 minutes as opposed to 30 minutes for the other drugs.


Avanafil is a synthetic small molecule, with one chiral center. Avanafil has a molecular weight of 483.95 Da, an ALogP of 2.16, 3 hydrogen bond donors and 9 hydrogen bond acceptors and thus fully rule-of-five compliant. (IUPAC: 4-[(3-chloro-4-methoxyphenyl)methylamino]-2-[(2S)-2-(hydroxymethyl)-pyrrolidin-1-yl]-N-(pyrimidin-2-ylmethyl)pyrimidine-5-carboxamide; Canonical Smiles: COC1=C(C=C(C=C1)CNC2=NC(=NC=C2C(=O)NCC3=NC=CC=N3)N4CCC[C@H]4CO)Cl; InChI: InChI=1S/C23H26ClN7O3/c1-34-19-6-5-15(10-18(19)24)11-27-21-17(22(33)28-
13-20-25-7-3-8-26-20)12-29-23(30-21)31-9-2-4-16(31)14-32/h3,5-8,10,12,
16,32H,2,4,9,11,13-14H2,1H3,(H,28,33)(H,27,29,30)/t16-/m0/s1)

The recommended starting dose of Avanafil is 100 mg and should be taken orally as needed approximately 30 minutes before sexual activity. Depending on individual efficacy and tolerability, the dose can be varied to a maximum dose of 200 mg or decreased to 50 mg. The lowest dose that  provides efficacy should be used. The maximum recommended dosing frequency is once per day.

Avanafil is rapidly absorbed after oral administration, with a median Tmax of 30 to 45 minutes in the fasted state and 1.12 to 1.25 hours when taken with a high fat meal. Avanafil is approximately 99% bound to plasma proteins and has been found to not accumulate in plasma. It is predominantely cleared by hepatic metabolism, mainly by CYP3A4 enzyme and to a minor extent by CYP2c isoform. The plasma concentrations of the major metabolites, M4 and M16, are approximately 23% and 29% of that of the parent compound, respectively. The M4 metabolite accounts for approximately 4% of the pharmacologic activity of Avanafil, with an in vitro inhibitory potency for PDE5 of 18% of that of Avanafil. The M16 metabolite has been found inactive against PDE5. After oral administration, Avanafil is excreted as metabolites mainly in the feces (approximately 62% of administrated dose) and to a lesser extent in the urine (approximately 21% of the administrated dose). Avanafil has a terminal elimination  half-life (t1/2) of approximately 5 hours, which is comparable to that of Sildenafil (3-4h) and Vardenafil (4-5h), but very short relative to the very long half-life of Tadalafil (17.5h).

The full prescribing information of Avanafil can be found here.

The license holder is Vivus, Inc.

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...