Skip to main content

ChEMBL_16 Released



We are pleased to announce the release of ChEMBL_16. This version of the database was prepared on 7th May 2013 and contains:

1,481,473 compound records
1,295,510 compounds (of which 1,292,344 have mol files)
11,420,351 activities
712,836 assays
9,844 targets
50,095 documents
19 activity data sources

You can download the data from the ChEMBL ftpsite and do not forget to read the ChEMBL_16 Release Notes

Data changes since the last release
ChEMBL_16 includes the Millipore Kinase Screening publication (CHEMBL2218924), which is kinase screening panel data set focused on 158 known kinase inhibitors and the OSDD Malaria Screening dataset (CHEMBL2113921), which is a set of anti-malarial compounds and bioactivity data provided by the OSDD Malaria consortium
In addition to the our regular publication and dataset updates we are now also loading supplementary bioactivity datasets. In this example the original paper from GSK was published in 2010 (CHEMBL1157114) and with the release of ChEMBL_16 we now provide 2 supplementary datasets (CHEMBL2218064 and CHEMBL2094195). You can see the original paper an supplemenatry datasets in screenshot below (this also demonstrates the new document search functionality we have added to the interface):


We are would like grow our supplementary bioactivity datasets, so please get in touch if you have any similar data you would like to deposit in the ChEMBL database. Stefan Senger from GSK, has put together the following slides, which provide more details on the pros and pros of depositing  supplementary bioactivity data. (Also thanks Derek Lowe over at In The Pipeline for the following blog post).

Interface changes since the last release:
We have made a number changes to the interface which are listed below:
  • Document Search - Submit a keyword search against journal articles and datasets loaded into the database
  • Browse Targets - We have improved the tree browser on protein classification and organism browser targets page 
  • Browse Drugs - Now allows searching on USAN stem and ATC code definitions
  • Updated FAQ pages - see here
  • Target Report Card - Now contains a target relation section, providing links between targets sharing protein components. The target report card also includes links to CREDO and TIMBAL databases
  • Compound Report Card - Includes a link to NCI Resolver service, to retrieve additional synonyms for a compound
In addition to our regular set of downloads (Oracle, MySQL, PostgreSQL) you will also find RDF version on the ChEMBL database. The current version is 16.0 and the files are available to download here. You can expect some minor changes in the RDF between now and the ChEMBL_17 release and these will be represented by increments in the minor version number
The ChEMBL Team


Comments

Popular posts from this blog

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p