Skip to main content

ChEMBL_19 Released - Now with Crop Protection Data!

We are pleased to announce the release of ChEMBL_19. This version of the database was prepared on 3rd July 2014 and contains:
  • 1,637,862 compound records
  • 1,411,786 compounds (of which 1,404,752 have molfiles)
  • 12,843,338 bioactivities
  • 1,106,285 bioassays
  • 10,579 targets
  • 57,156 abstracted documents
Data can be downloaded from the ChEMBL ftpsite. Please see ChEMBL_19 release notes for full details of the changes in this release.

New crop protection data

We have now expanded the content of ChEMBL to include data relevant to crop protection research. Bioactivity data covering insecticides, fungicides and herbicides were extracted from a number of different journals such as J. Agric. Food. Chem., J. Pesticide Sci., Crop Protection and Pest Manag. Sci. The addition of this dataset to ChEMBL was funded by Syngenta. In total, more than 40K compound records and 245K activities were added in this dataset. These data are included in the 'Scientific Literature' data source and can be retrieved from the ChEMBL interface using the taxonomy browser ('Browse Targets' -> 'Taxonomy') or through assay keyword searches (e.g., 'insecticidal', 'herbicidal').

Other changes since the last release

New neglected disease data sets

ChEMBL_19 includes the following data sets:

  • MMV malaria box Plasmodium falciparum screening data deposited by Eisai
  • MMV malaria box Onchocerca lienalis screening data deposited by Northwick Park Institute for Medical Research
  • MMV malaria box Cryptosporidium parvum screening data deposited by the University of Vermont
  • Trypanosoma cruzi fenarimol series screening data deposited by Drugs for Neglected Diseases Initiative (DNDi)
  • Plasmodium falciparum screening data from the Open Source Malaria project.

Hepatotoxicity data

Hepatotoxicity information for more than 1,200 compounds has been extracted from the following publication, relating to the 14th edition of the Drug hepatotoxicity bibliographic database:

  • Biour M, Ben Salem C, Chazouillères O, Grangé JD, Serfaty L and Poupon R. [Drug-induced liver injury; fourteenth updated edition of the bibliographic database of liver injuries and related drugs]. Gastroenterol. Clin. Biol., 2004, 28(8-9), 720-759.

New journal coverage
We are now pleased to be able to include MedChemComm in our list of journals for routine data extraction. ChEMBL_19 includes 120 articles from this excellent journal, published between 2013 and 2014. We are most grateful to the RSC for access to the source journal material. We will post more on this exciting new partnership in a future blog post!

Interface enhancements

New compound sketcher:
The ligand search now provides ChemAxon's Marvin JS sketcher as default for substructure/similarity searches.

Cochrane Collaboration reviews and British National Formulary (BNF) entries:
For drugs, the compound report card now provides links to any available Cochrane reviews and entries in the British National Formulary.

UniChem cross references:
UniChem now contains two additional sources: NMRShiftDB and the LINCS program. Cross references to these databases (where the compound occurs in the relevant source) are now provided on compound report card pages.

As usual, contact us at for any questions/feedback.

The ChEMBL Team


Popular posts from this blog

ChEMBL_27 SARS-CoV-2 release

The COVID-19 pandemic has resulted in an unprecedented effort across the global scientific community. Drug discovery groups are contributing in several ways, including the screening of compounds to identify those with potential anti-SARS-CoV-2 activity. When the compounds being assayed are marketed drugs or compounds in clinical development then this may identify potential repurposing opportunities (though there are many other factors to consider including safety and PK/PD considerations; see for example The results from such compound screening can also help inform and drive our understanding of the complex interplay between virus and host at different stages of infection.
Several large-scale drug screening studies have now been described and made available as pre-prints or as peer-reviewed publications. The ChEMBL team has been following these developments with significant interest, and as a contribution t…

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible?

Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook!

We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it.

With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below:
docker pull eloyfelix/rdkit_jupyter_clingdocker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_clingopen http://localhost:9999/notebooks/rdkit_cling.ipynb in a browser

FPSim2, a simple Python3 molecular similarity tool

FPSim2 is a new tool for fast similarity search on big compound datasets (>100 million) being developed at ChEMBL. We started developing it as we needed a Python3 library able to run either in memory or out-of-core fast similarity searches on such dataset sizes.

It's written in Python/Cython and features:
A fast population count algorithm (builtin-popcnt-unrolled) from using SIMD instructions.Bounds for sub-linear speed-ups from 10.1021/ci600358fA compressed file format with optimised read speed based in PyTables and BLOSCUse of multiple cores in a single search In memory and on disk search modesSimple and easy to use
Source code is available on github and Conda packages are also available for either mac or linux. To install it type:

conda install rdkit -c rdkitconda install fpsim2 -c efelix
Try it with docker (much better performance than binder):

    docker pull eloyfelix/fpsim2    docker run -p 9999:9999 eloyfelix/fpsim2    open htt…

2019 and ChEMBL – News, jobs and birthdays

Happy New Year from the ChEMBL Group to all our users and collaborators. 
Firstly, do you want a new challenge in 2019?  If so, we have a position for a bioinformatician in the ChEMBL Team to develop pipelines for identifying links between therapeutic targets, drugs and diseases.  You will be based in the ChEMBL team but also work in collaboration with the exciting Open Targets initiative.  More details can be found here(closing date 24thJanuary). 
In case you missed it, we published a paper at the end of last on the latest developments of the ChEMBL database “ChEMBL: towards direct deposition of bioassay data”. You can read it here.  Highlights include bioactivity data from patents, human pharmacokinetic data from prescribing information, deposited data from neglected disease screening and data from the IMI funded K4DD project.  We have also added a lot of new annotations on the therapeutic targets and indications for clinical candidates and marketed drugs to ChEMBL.  Importantly we ha…

ChEMBL 25 and new web interface released

We are pleased to announce the release of ChEMBL 25 and our new web interface. This version of the database, prepared on 10/12/2018 contains:

2,335,417 compound records1,879,206 compounds (of which 1,870,461 have mol files)15,504,603 activities1,125,387 assays12,482 targets72,271 documents

Data can be downloaded from the ChEMBL ftp site:

Please see ChEMBL_25 release notes for full details of all changes in this release:


# Deposited Data Sets:

Kuster Lab Chemical Proteomics Drug Profiling (src_id = 48, Document ChEMBL_ID = CHEMBL3991601):
Data have been included from the publication: The target landscape of clinical kinase drugs. Klaeger S, Heinzlmeir S and Wilhelm M et al (2017), Science, 358-6367 (

# In Vivo Assay Classification:

A classification…