Skip to main content

SureChEMBL Available Now





Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online.

SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here. SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writing this blogpost the number of unique compounds in SureChEMBL is 15,760,514, which have been extracted from 12,949,021 patents.

To get started using SureChEMBL, head over to the homepage, where you will be presented with a range of search methods and filters. The image below provides a brief overview of the search functionality offered by the system:




To provide an example of how to use the SureChEMBL website, let's assume you are interested in patents which contained structures similar (or identical) to Sildenafil in the claims section of the document and also mention the term PDE5 anywhere in the document. To run this search, go to the SureChEMBL homepage and carry out the following actions:
  1. Enter the term 'PDE5' in the search text box 
  2. Sketch in the structure of Sildenafil (or use the name look-up function)
  3. Change the search type to similarity (>85%) 
  4. Click the 'Claims' checkbox in the document filter section and 
  5. Hit 'Search' button


After clicking 'Search', you will be presented with a page which contains all compounds that match your search criteria:





From the compound results page above you then have the choice of either exporting the chemistry (all the compounds returned by the search) or viewing the patents associated with 1 more of the selected compounds. For the selected compounds in this search, the associated patents (sorted by descending publication date) are :


 

From the patent document results page, you are able to export chemistry from all documents on display, view patent family information and view the chemistry-annotated, full text document. The claims section of the first patent (US-20140255433-A1) includes references to both sildenafil and PDE5:


 

The aim of this blogpost is to introduce the SureChEMBL system and not to provide a comprehensive review of all the functionality the system offers. This will be covered in future training sessions and webinars, which will be announced on this blog in the near future.

We would like to thank the people over at Digital Science, who were responsible for building the original SureChem system and supported its migration over to EMBL-EBI. In particular, we would like to thank Nicko Goncharoff, James Siddle and Richard Koks.

The system runs on the cloud - specifically on Amazon Web Services, a stable, secure and highly scalable way to deploy web applications. We need to keep a close eye on performance and patterns of usage over the coming weeks, to get an idea of how many servers, etc, we need for full deployment. In particular, we will throttle scripted access,  so please get in touch if you want to try anything like this, so you are not frustrated by slow performance, and we will try and accommodate your use case. There is also a download link on the homepage, so please explore this if you are interested.

We have an exciting roadmap for the future development of SureChEMBL, bt if you have any priority requests, mail them to surechembl-help (at) ebi.ac.uk.

If you experience any issues with the system, or have any questions please get in touch.

Comments

Bio to Chem said…
Good stuff but pleast try to get the through-link auto searches from PubChem working again. Granted I can paste the SMILES and launch the search but it was nice to have that already executed in the linking
Richard H said…
I think this will be a valuable resource, thanks. I was wondering if it was possible to link from an SCHEMBL identifier (as reported in the downloaded SD file) back into the SureChEMBL website? I couldn't see a way to do this.
Mark Davies said…
Hi Richard,

You can use the following example URL to link back to the SureChEMBL website: https://www.surechembl.org/chemical/SCHEMBL1895

Mark
Richard H said…
Great, I'll give that a whirl, thanks Mark :)

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no