Skip to main content

SureChEMBL Available Now





Followers of the ChEMBL group's activities and this blog will be aware of our involvement in the migration of the previously commercially available SureChem chemistry patent system, to a new, free-for-all system, known as SureChEMBL. Today we are very pleased to announce that the migration process is complete and the SureChEMBL website is now online.

SureChEMBL provides the research community with the ability to search the patent literature using Lucene-based keyword queries and, much more importantly, chemistry-based queries. If you are not familiar with SureChEMBL, we recommend you review the content of these earlier blogposts here and here. SureChEMBL is a live system, which is continuously extracting chemical entities from the patent literature. The time it takes for a new chemical in the patent literature to become searchable in the SureChEMBL system is 1-2 days (WO patents can sometimes take a bit longer due to an additional reprocessing step). At time of writing this blogpost the number of unique compounds in SureChEMBL is 15,760,514, which have been extracted from 12,949,021 patents.

To get started using SureChEMBL, head over to the homepage, where you will be presented with a range of search methods and filters. The image below provides a brief overview of the search functionality offered by the system:




To provide an example of how to use the SureChEMBL website, let's assume you are interested in patents which contained structures similar (or identical) to Sildenafil in the claims section of the document and also mention the term PDE5 anywhere in the document. To run this search, go to the SureChEMBL homepage and carry out the following actions:
  1. Enter the term 'PDE5' in the search text box 
  2. Sketch in the structure of Sildenafil (or use the name look-up function)
  3. Change the search type to similarity (>85%) 
  4. Click the 'Claims' checkbox in the document filter section and 
  5. Hit 'Search' button


After clicking 'Search', you will be presented with a page which contains all compounds that match your search criteria:





From the compound results page above you then have the choice of either exporting the chemistry (all the compounds returned by the search) or viewing the patents associated with 1 more of the selected compounds. For the selected compounds in this search, the associated patents (sorted by descending publication date) are :


 

From the patent document results page, you are able to export chemistry from all documents on display, view patent family information and view the chemistry-annotated, full text document. The claims section of the first patent (US-20140255433-A1) includes references to both sildenafil and PDE5:


 

The aim of this blogpost is to introduce the SureChEMBL system and not to provide a comprehensive review of all the functionality the system offers. This will be covered in future training sessions and webinars, which will be announced on this blog in the near future.

We would like to thank the people over at Digital Science, who were responsible for building the original SureChem system and supported its migration over to EMBL-EBI. In particular, we would like to thank Nicko Goncharoff, James Siddle and Richard Koks.

The system runs on the cloud - specifically on Amazon Web Services, a stable, secure and highly scalable way to deploy web applications. We need to keep a close eye on performance and patterns of usage over the coming weeks, to get an idea of how many servers, etc, we need for full deployment. In particular, we will throttle scripted access,  so please get in touch if you want to try anything like this, so you are not frustrated by slow performance, and we will try and accommodate your use case. There is also a download link on the homepage, so please explore this if you are interested.

We have an exciting roadmap for the future development of SureChEMBL, bt if you have any priority requests, mail them to surechembl-help (at) ebi.ac.uk.

If you experience any issues with the system, or have any questions please get in touch.

Comments

Bio to Chem said…
Good stuff but pleast try to get the through-link auto searches from PubChem working again. Granted I can paste the SMILES and launch the search but it was nice to have that already executed in the linking
Richard H said…
I think this will be a valuable resource, thanks. I was wondering if it was possible to link from an SCHEMBL identifier (as reported in the downloaded SD file) back into the SureChEMBL website? I couldn't see a way to do this.
Mark Davies said…
Hi Richard,

You can use the following example URL to link back to the SureChEMBL website: https://www.surechembl.org/chemical/SCHEMBL1895

Mark
Richard H said…
Great, I'll give that a whirl, thanks Mark :)

Popular posts from this blog

ChEMBL_27 SARS-CoV-2 release

The COVID-19 pandemic has resulted in an unprecedented effort across the global scientific community. Drug discovery groups are contributing in several ways, including the screening of compounds to identify those with potential anti-SARS-CoV-2 activity. When the compounds being assayed are marketed drugs or compounds in clinical development then this may identify potential repurposing opportunities (though there are many other factors to consider including safety and PK/PD considerations; see for example https://www.medrxiv.org/content/10.1101/2020.04.16.20068379v1.full.pdf+html). The results from such compound screening can also help inform and drive our understanding of the complex interplay between virus and host at different stages of infection.
Several large-scale drug screening studies have now been described and made available as pre-prints or as peer-reviewed publications. The ChEMBL team has been following these developments with significant interest, and as a contribution t…

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible?

Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook!

We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it.

With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below:
docker pull eloyfelix/rdkit_jupyter_clingdocker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_clingopen http://localhost:9999/notebooks/rdkit_cling.ipynb in a browser


FPSim2, a simple Python3 molecular similarity tool

FPSim2 is a new tool for fast similarity search on big compound datasets (>100 million) being developed at ChEMBL. We started developing it as we needed a Python3 library able to run either in memory or out-of-core fast similarity searches on such dataset sizes.

It's written in Python/Cython and features:
A fast population count algorithm (builtin-popcnt-unrolled) from https://github.com/WojciechMula/sse-popcount using SIMD instructions.Bounds for sub-linear speed-ups from 10.1021/ci600358fA compressed file format with optimised read speed based in PyTables and BLOSCUse of multiple cores in a single search In memory and on disk search modesSimple and easy to use
Source code is available on github and Conda packages are also available for either mac or linux. To install it type:

conda install rdkit -c rdkitconda install fpsim2 -c efelix
Try it with docker (much better performance than binder):

    docker pull eloyfelix/fpsim2    docker run -p 9999:9999 eloyfelix/fpsim2    open htt…

ChEMBL 25 and new web interface released

We are pleased to announce the release of ChEMBL 25 and our new web interface. This version of the database, prepared on 10/12/2018 contains:

2,335,417 compound records1,879,206 compounds (of which 1,870,461 have mol files)15,504,603 activities1,125,387 assays12,482 targets72,271 documents

Data can be downloaded from the ChEMBL ftp site: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25

Please see ChEMBL_25 release notes for full details of all changes in this release: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/chembl_25_release_notes.txt


DATA CHANGES SINCE THE LAST RELEASE

# Deposited Data Sets:

Kuster Lab Chemical Proteomics Drug Profiling (src_id = 48, Document ChEMBL_ID = CHEMBL3991601):
Data have been included from the publication: The target landscape of clinical kinase drugs. Klaeger S, Heinzlmeir S and Wilhelm M et al (2017), Science, 358-6367 (https://doi.org/10.1126/science.aan4368)

# In Vivo Assay Classification:

A classification…

2019 and ChEMBL – News, jobs and birthdays

Happy New Year from the ChEMBL Group to all our users and collaborators. 
Firstly, do you want a new challenge in 2019?  If so, we have a position for a bioinformatician in the ChEMBL Team to develop pipelines for identifying links between therapeutic targets, drugs and diseases.  You will be based in the ChEMBL team but also work in collaboration with the exciting Open Targets initiative.  More details can be found here(closing date 24thJanuary). 
In case you missed it, we published a paper at the end of last on the latest developments of the ChEMBL database “ChEMBL: towards direct deposition of bioassay data”. You can read it here.  Highlights include bioactivity data from patents, human pharmacokinetic data from prescribing information, deposited data from neglected disease screening and data from the IMI funded K4DD project.  We have also added a lot of new annotations on the therapeutic targets and indications for clinical candidates and marketed drugs to ChEMBL.  Importantly we ha…