Skip to main content

The SureChEMBL map file is out


As many of you know, SureChEMBL taps into the wealth of knowledge hidden in the patent documents. More specifically, SureChEMBL extracts and indexes chemistry from the full-text patent corpus (EPO, WIPO and USPTO; JPO titles and abstracts only) by means of automated text- and image-mining, on a daily basis. We have recently hosted a webinar about it which turned out to be very popular - for those who missed it, the video and slides are here.

Besides the interface, SureChEMBL compound data can be accessed in various ways, such as UniChem and PubChem. The full compound dump is also available as a flat file download from our ftp server.

Since the release of the SureChEMBL interface last September, we have received numerous requests for a way to access compound and patent data in a batch way. Typical use-cases would include retrieving all compounds for a list of patent IDs, or vice versa, retrieving all patents where one or more compounds have been extracted from. As a result, we have now produced this so-called map file which connects SureChEMBL compounds and patents.

It is available here.
More information can be found in the README file.

What is this file?

There is a total of 216,892,266 rows in the map, indicating a compound extracted from a specific section of a specific patent document. The format of the file is quite simple: it contains compound information (SCHEMBL ID, SMILES, InChI Key, corpus frequency), patent information (patent ID and publication data), and finally location information, such as the field ID and frequency. The field ID indicates the specific section in the patent where the compound was extracted from (1:Description, 2:Claims, 3:Abstract, 4:Title, 5:Image, 6:MOL attachment). The frequency is the number of times the compound was found in a given section of a given patent. More information on the format of the file in the README file.

How many compounds and patents are there?

There are 187,958,584 unique patent-compound pairs, involving 14,076,090 unique compound IDs extracted from 3,585,233 EP, JP, WO and US patent documents - an average of ~52 compounds per patent. The patent coverage is from 1960 to 31-12-2014 inclusive.

Here's a breakdown of the patents in the map per year and patent authority:




Are these all the compounds and patents in SureChEMBL?

Technically, no - in practice, yes. We excluded chemically annotated patents that are not immediately relevant to life sciences, such as this one. For the filtering, we used a list of relevant IPCR and related patent classification codes. At the same time, we excluded too small, too large, too trivial compounds, along with non-organic and radical/fragment compounds.

Are these compounds genuinely claimed as novel in their respective patents?

Automated methods to assess which are the important and relevant compounds in a pharmaceutical patent is a field of research and one of our future plans. For now, the map file include all extracted chemistry mentioned in all sections of a patent, subject to the filters listed in the previous section. A quick and effective trick to filter out trivial and/or uninformative compounds is to use the corpus frequency column and exclude everything with a value more than, say, 1000. Note that, in this way, you will also exclude drug compounds such as sildenafil, which are casually mentioned in a lot of patents. You could also look for compounds mentioned only in claims, description or images sections by filtering by the corresponding field ID.

What can I do with this?

Well, you can start by 'grepping' for one or more patent IDs or SCHEMBL IDs or InChI keys, followed by further filtering. Many of you will choose to normalise the flat file into 3 database tables (say compounds, documents and doc_to_compound) for centralised access and easy querying.

For example, to find the patents the drug palbociclib has been extracted from:

Any plans to update this map file?  

New patents and chemistry arrive and are stored to SureChEMBL every day. We are planning to release new versions and incremental updates of the map file every quarter, in sync with the update of the compound dump files.

I couldn’t find my compound / patent - this compound should not be there

Don’t forget this an automated, live, high-throughput text-mining effort against an inherently noisy corpus such as patents. We are constantly working on improving data quality. If you find anything strange, let us know.

Can I join more metadata, such as patent assignee and title?

Obviously your first port of call would be the SureChEMBL website for patent metadata, but other services you may wish to use include the EPO web services for programmatic access.

Is there anything else?

Errr, yes. Watch this space for another post on storing and accessing live SureChEMBL data, behind your firewall. 


The SureChEMBL Team

Comments

Popular posts from this blog

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible?

Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook!

We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it.

With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below:
docker pull eloyfelix/rdkit_jupyter_clingdocker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_clingopen http://localhost:9999/notebooks/rdkit_cling.ipynb in a browser


ChEMBL 25 and new web interface released

We are pleased to announce the release of ChEMBL 25 and our new web interface. This version of the database, prepared on 10/12/2018 contains:

2,335,417 compound records1,879,206 compounds (of which 1,870,461 have mol files)15,504,603 activities1,125,387 assays12,482 targets72,271 documents

Data can be downloaded from the ChEMBL ftp site: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25

Please see ChEMBL_25 release notes for full details of all changes in this release: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/chembl_25_release_notes.txt


DATA CHANGES SINCE THE LAST RELEASE

# Deposited Data Sets:

Kuster Lab Chemical Proteomics Drug Profiling (src_id = 48, Document ChEMBL_ID = CHEMBL3991601):
Data have been included from the publication: The target landscape of clinical kinase drugs. Klaeger S, Heinzlmeir S and Wilhelm M et al (2017), Science, 358-6367 (https://doi.org/10.1126/science.aan4368)

# In Vivo Assay Classification:

A classification…

FPSim2, a simple Python3 molecular similarity tool

FPSim2 is a new tool for fast similarity search on big compound datasets (>100 million) being developed at ChEMBL. We started developing it as we needed a Python3 library able to run either in memory or out-of-core fast similarity searches on such dataset sizes.

It's written in Python/Cython and features:
A fast population count algorithm (builtin-popcnt-unrolled) from https://github.com/WojciechMula/sse-popcount using SIMD instructions.Bounds for sub-linear speed-ups from 10.1021/ci600358fA compressed file format with optimised read speed based in PyTables and BLOSCUse of multiple cores in a single search In memory and on disk search modesSimple and easy to use
Source code is available on github and Conda packages are also available for either mac or linux. To install it type:

conda install rdkit -c rdkitconda install fpsim2 -c efelix
Try it with docker (much better performance than binder):

    docker pull eloyfelix/fpsim2    docker run -p 9999:9999 eloyfelix/fpsim2    open htt…

2019 and ChEMBL – News, jobs and birthdays

Happy New Year from the ChEMBL Group to all our users and collaborators. 
Firstly, do you want a new challenge in 2019?  If so, we have a position for a bioinformatician in the ChEMBL Team to develop pipelines for identifying links between therapeutic targets, drugs and diseases.  You will be based in the ChEMBL team but also work in collaboration with the exciting Open Targets initiative.  More details can be found here(closing date 24thJanuary). 
In case you missed it, we published a paper at the end of last on the latest developments of the ChEMBL database “ChEMBL: towards direct deposition of bioassay data”. You can read it here.  Highlights include bioactivity data from patents, human pharmacokinetic data from prescribing information, deposited data from neglected disease screening and data from the IMI funded K4DD project.  We have also added a lot of new annotations on the therapeutic targets and indications for clinical candidates and marketed drugs to ChEMBL.  Importantly we ha…

ChEMBL_27 SARS-CoV-2 release

The COVID-19 pandemic has resulted in an unprecedented effort across the global scientific community. Drug discovery groups are contributing in several ways, including the screening of compounds to identify those with potential anti-SARS-CoV-2 activity. When the compounds being assayed are marketed drugs or compounds in clinical development then this may identify potential repurposing opportunities (though there are many other factors to consider including safety and PK/PD considerations; see for example https://www.medrxiv.org/content/10.1101/2020.04.16.20068379v1.full.pdf+html). The results from such compound screening can also help inform and drive our understanding of the complex interplay between virus and host at different stages of infection.
Several large-scale drug screening studies have now been described and made available as pre-prints or as peer-reviewed publications. The ChEMBL team has been following these developments with significant interest, and as a contribution t…