Skip to main content

ChEMBL 22 Released


We are pleased to announce the release of ChEMBL 22. This version of the database, prepared on 8th August 2016 contains:

  • 2,043,051 compound records
  • 1,686,695 compounds (of which 1,678,393 have mol files)
  • 14,371,219 activities
  • 1,246,132 assays
  • 11,224 targets
  • 65,213 documents

Data can be downloaded from the ChEMBL ftpsite or viewed via the ChEMBL interface. Please see ChEMBL_22 release notes for full details of all changes in this release.

CHANGES SINCE THE LAST RELEASE

In addition to the regular updates to the Scientific Literature, PubChem, FDA Orange Book and USP Dictionary of USAN and INN Investigational Drug Names this release of ChEMBL also includes the following new data:

Deposited Data Sets:

Two new deposited data sets have been included in ChEMBL_22: the MMV Pathogen Box compound set (http://www.pathogenbox.org) and GSK Tres Cantos Follow-up TB Screening Data (http://dx.doi.org/10.1371/journal.pone.0142293).

Patent Data from BindingDB:

We have worked with the BindingDB team to integrate the bioactivity data that they have extracted from more than 1000 granted US patents published from 2013 onwards (https://www.bindingdb.org/bind/ByPatent.jsp) into ChEMBL. This data is incorporated into ChEMBL in the same way as literature-extracted bioactivity information, but with a new source (SRC_ID = 37, BindingDB Database) and a document type of 'PATENT'. In total this data set provides 99K bioactivity measurements for 68K compounds.

Withdrawn Drugs:

We have compiled a list of drugs that have been withdrawn in one or more countries due to safety or efficacy issues from multiple sources. Where available, the year of withdrawal, the applicable countries/areas and the reasons for the withdrawal are captured. Withdrawal information is shown on the Compound Report Card and a new icon has been added to the availability type section of the  Molecule Features image to denote drugs that have been withdrawn (e.g., https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL408).


Tissue Annotation:

We have identified tissues used in assays (e.g., tissues in which measurements were made after in-vivo dosing, isolated tissues on which assays were performed, or tissues from which sub-cellular fractions were prepared) using the Uberon ontology (http://uberon.github.io). A TISSUE_DICTIONARY table has been created, which stores a list of the identified tissues, their corresponding ChEMBL_IDs, names and Uberon IDs. Mappings are also provided to the Experimental Factor Ontology (http://www.ebi.ac.uk/ols/ontologies/efo), Brenda Tissue Ontology (http://www.ebi.ac.uk/ols/ontologies/bto) and CALOHA Ontology (ftp://ftp.nextprot.org/pub/current_release/controlled_vocabularies/caloha.obo). Tissue Report Cards have been created (e.g., https://www.ebi.ac.uk/chembl/tissue/inspect/CHEMBL3638244), providing a mechanism to view all of the assay data associated with a particular tissue. The keyword search now also allows searching by tissue name, Uberon ID, EFO ID, Brenda Tissue ID or CALOHA tissue ID.



Indications for Clinical Candidates:

Indication information has now been extended to cover clinical candidates. This information has been extracted from ClinicalTrials.gov and is included in the 'Browse Drug Indications' view and on Compound Report Cards.

Drug Metabolism Viewer:

An additional section has been added to Compound Report Cards to display drug metabolism schemes (e.g., https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL1064). These schemes can be opened in an expanded view by clicking the link above the image. Where known, enzyme information is shown on edges and clicking on an edge of interest will provide additional information about the reaction, including references. Clicking on the nodes allows linking to Compound Report Cards for the metabolites.


Variant Sequences:

For cases where assay data has been measured against a variant protein (e.g., site-directed mutagenesis or drug-resistance studies) we have created a VARIANT_SEQUENCES table to store the variant protein sequence used in the assay (the target for the assay will still be the wild-type protein). Since the exact protein sequence used in an assay is rarely reported in the medicinal chemistry literature, these sequences have been re-created by introducing the specified point mutation into the current UniProt sequence for the target. The resulting sequence is not therefore guaranteed to be the exact sequence used in the assay but provides a more robust way to document the relevant mutation(s) than the current use of residue name and position in most publications and ChEMBL assay descriptions (which quickly becomes obsolete when sequences change). In cases where the reported residue positions could not be reconciled with any UniProt sequence, variant sequence information has not been included in ChEMBL. Further sequences (requiring more curation) will be added in future releases. Assays with variant sequence information available are linked to the VARIANT_SEQUENCES table via the VARIANT_ID column. Please note, this information is not yet displayed on the ChEMBL interface.

We recommend you review the ChEMBL_22 release notes for a comprehensive overview of all updates and changes in ChEMBL 22, including schema changes, and as always, we greatly appreciate the reporting of any omissions or errors.

Keep an eye on the ChEMBL twitter and blog accounts for news and updates.

The ChEMBL Team

Comments

Popular posts from this blog

ChEMBL_27 SARS-CoV-2 release

The COVID-19 pandemic has resulted in an unprecedented effort across the global scientific community. Drug discovery groups are contributing in several ways, including the screening of compounds to identify those with potential anti-SARS-CoV-2 activity. When the compounds being assayed are marketed drugs or compounds in clinical development then this may identify potential repurposing opportunities (though there are many other factors to consider including safety and PK/PD considerations; see for example https://www.medrxiv.org/content/10.1101/2020.04.16.20068379v1.full.pdf+html). The results from such compound screening can also help inform and drive our understanding of the complex interplay between virus and host at different stages of infection.
Several large-scale drug screening studies have now been described and made available as pre-prints or as peer-reviewed publications. The ChEMBL team has been following these developments with significant interest, and as a contribution t…

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible?

Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook!

We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it.

With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below:
docker pull eloyfelix/rdkit_jupyter_clingdocker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_clingopen http://localhost:9999/notebooks/rdkit_cling.ipynb in a browser


FPSim2, a simple Python3 molecular similarity tool

FPSim2 is a new tool for fast similarity search on big compound datasets (>100 million) being developed at ChEMBL. We started developing it as we needed a Python3 library able to run either in memory or out-of-core fast similarity searches on such dataset sizes.

It's written in Python/Cython and features:
A fast population count algorithm (builtin-popcnt-unrolled) from https://github.com/WojciechMula/sse-popcount using SIMD instructions.Bounds for sub-linear speed-ups from 10.1021/ci600358fA compressed file format with optimised read speed based in PyTables and BLOSCUse of multiple cores in a single search In memory and on disk search modesSimple and easy to use
Source code is available on github and Conda packages are also available for either mac or linux. To install it type:

conda install rdkit -c rdkitconda install fpsim2 -c efelix
Try it with docker (much better performance than binder):

    docker pull eloyfelix/fpsim2    docker run -p 9999:9999 eloyfelix/fpsim2    open htt…

2019 and ChEMBL – News, jobs and birthdays

Happy New Year from the ChEMBL Group to all our users and collaborators. 
Firstly, do you want a new challenge in 2019?  If so, we have a position for a bioinformatician in the ChEMBL Team to develop pipelines for identifying links between therapeutic targets, drugs and diseases.  You will be based in the ChEMBL team but also work in collaboration with the exciting Open Targets initiative.  More details can be found here(closing date 24thJanuary). 
In case you missed it, we published a paper at the end of last on the latest developments of the ChEMBL database “ChEMBL: towards direct deposition of bioassay data”. You can read it here.  Highlights include bioactivity data from patents, human pharmacokinetic data from prescribing information, deposited data from neglected disease screening and data from the IMI funded K4DD project.  We have also added a lot of new annotations on the therapeutic targets and indications for clinical candidates and marketed drugs to ChEMBL.  Importantly we ha…

ChEMBL 25 and new web interface released

We are pleased to announce the release of ChEMBL 25 and our new web interface. This version of the database, prepared on 10/12/2018 contains:

2,335,417 compound records1,879,206 compounds (of which 1,870,461 have mol files)15,504,603 activities1,125,387 assays12,482 targets72,271 documents

Data can be downloaded from the ChEMBL ftp site: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25

Please see ChEMBL_25 release notes for full details of all changes in this release: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/chembl_25_release_notes.txt


DATA CHANGES SINCE THE LAST RELEASE

# Deposited Data Sets:

Kuster Lab Chemical Proteomics Drug Profiling (src_id = 48, Document ChEMBL_ID = CHEMBL3991601):
Data have been included from the publication: The target landscape of clinical kinase drugs. Klaeger S, Heinzlmeir S and Wilhelm M et al (2017), Science, 358-6367 (https://doi.org/10.1126/science.aan4368)

# In Vivo Assay Classification:

A classification…