Skip to main content

ChEMBL 22 Released


We are pleased to announce the release of ChEMBL 22. This version of the database, prepared on 8th August 2016 contains:

  • 2,043,051 compound records
  • 1,686,695 compounds (of which 1,678,393 have mol files)
  • 14,371,219 activities
  • 1,246,132 assays
  • 11,224 targets
  • 65,213 documents

Data can be downloaded from the ChEMBL ftpsite or viewed via the ChEMBL interface. Please see ChEMBL_22 release notes for full details of all changes in this release.

CHANGES SINCE THE LAST RELEASE

In addition to the regular updates to the Scientific Literature, PubChem, FDA Orange Book and USP Dictionary of USAN and INN Investigational Drug Names this release of ChEMBL also includes the following new data:

Deposited Data Sets:

Two new deposited data sets have been included in ChEMBL_22: the MMV Pathogen Box compound set (http://www.pathogenbox.org) and GSK Tres Cantos Follow-up TB Screening Data (http://dx.doi.org/10.1371/journal.pone.0142293).

Patent Data from BindingDB:

We have worked with the BindingDB team to integrate the bioactivity data that they have extracted from more than 1000 granted US patents published from 2013 onwards (https://www.bindingdb.org/bind/ByPatent.jsp) into ChEMBL. This data is incorporated into ChEMBL in the same way as literature-extracted bioactivity information, but with a new source (SRC_ID = 37, BindingDB Database) and a document type of 'PATENT'. In total this data set provides 99K bioactivity measurements for 68K compounds.

Withdrawn Drugs:

We have compiled a list of drugs that have been withdrawn in one or more countries due to safety or efficacy issues from multiple sources. Where available, the year of withdrawal, the applicable countries/areas and the reasons for the withdrawal are captured. Withdrawal information is shown on the Compound Report Card and a new icon has been added to the availability type section of the  Molecule Features image to denote drugs that have been withdrawn (e.g., https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL408).


Tissue Annotation:

We have identified tissues used in assays (e.g., tissues in which measurements were made after in-vivo dosing, isolated tissues on which assays were performed, or tissues from which sub-cellular fractions were prepared) using the Uberon ontology (http://uberon.github.io). A TISSUE_DICTIONARY table has been created, which stores a list of the identified tissues, their corresponding ChEMBL_IDs, names and Uberon IDs. Mappings are also provided to the Experimental Factor Ontology (http://www.ebi.ac.uk/ols/ontologies/efo), Brenda Tissue Ontology (http://www.ebi.ac.uk/ols/ontologies/bto) and CALOHA Ontology (ftp://ftp.nextprot.org/pub/current_release/controlled_vocabularies/caloha.obo). Tissue Report Cards have been created (e.g., https://www.ebi.ac.uk/chembl/tissue/inspect/CHEMBL3638244), providing a mechanism to view all of the assay data associated with a particular tissue. The keyword search now also allows searching by tissue name, Uberon ID, EFO ID, Brenda Tissue ID or CALOHA tissue ID.



Indications for Clinical Candidates:

Indication information has now been extended to cover clinical candidates. This information has been extracted from ClinicalTrials.gov and is included in the 'Browse Drug Indications' view and on Compound Report Cards.

Drug Metabolism Viewer:

An additional section has been added to Compound Report Cards to display drug metabolism schemes (e.g., https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL1064). These schemes can be opened in an expanded view by clicking the link above the image. Where known, enzyme information is shown on edges and clicking on an edge of interest will provide additional information about the reaction, including references. Clicking on the nodes allows linking to Compound Report Cards for the metabolites.


Variant Sequences:

For cases where assay data has been measured against a variant protein (e.g., site-directed mutagenesis or drug-resistance studies) we have created a VARIANT_SEQUENCES table to store the variant protein sequence used in the assay (the target for the assay will still be the wild-type protein). Since the exact protein sequence used in an assay is rarely reported in the medicinal chemistry literature, these sequences have been re-created by introducing the specified point mutation into the current UniProt sequence for the target. The resulting sequence is not therefore guaranteed to be the exact sequence used in the assay but provides a more robust way to document the relevant mutation(s) than the current use of residue name and position in most publications and ChEMBL assay descriptions (which quickly becomes obsolete when sequences change). In cases where the reported residue positions could not be reconciled with any UniProt sequence, variant sequence information has not been included in ChEMBL. Further sequences (requiring more curation) will be added in future releases. Assays with variant sequence information available are linked to the VARIANT_SEQUENCES table via the VARIANT_ID column. Please note, this information is not yet displayed on the ChEMBL interface.

We recommend you review the ChEMBL_22 release notes for a comprehensive overview of all updates and changes in ChEMBL 22, including schema changes, and as always, we greatly appreciate the reporting of any omissions or errors.

Keep an eye on the ChEMBL twitter and blog accounts for news and updates.

The ChEMBL Team

Comments

Popular posts from this blog

UniChem 2.0

UniChem new beta interface and web services We are excited to announce that our UniChem beta site will become the default one on the 11th of May. The new system will allow us to better maintain UniChem and to bring new functionality in a more sustainable way. The current interface and web services will still be reachable for a period of time at https://www.ebi.ac.uk/unichem/legacy . In addition to it, the most popular legacy REST endpoints will also remain implemented in the new web services: https://www.ebi.ac.uk/unichem/api/docs#/Legacy Some downtime is expected during the swap.  What's new? UniChem’s current API and web application is implemented with a framework version that’s not maintained and the cost of updating it surpasses the cost of rebuilding it. In order to improve stability, security, and support the implementation and fast delivery of new features, we have decided to revamp our user-facing systems using the latest version of widely used and maintained frameworks, i

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

ChEMBL 30 released

  We are pleased to announce the release of ChEMBL 30. This version of the database, prepared on 22/02/2022 contains: 2,786,911 compound records 2,157,379 compounds (of which 2,136,187 have mol files) 19,286,751 activities 1,458,215 assays 14,855 targets 84,092 documents Data can be downloaded from the ChEMBL FTP site: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/ Please see ChEMBL_30 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/chembl_30_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document ID CHEMBL4689842):   The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesize at least

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra