Skip to main content

ChEMBL_22 Data and Web Services Update

ChEMBL_22_1 data update:

We would like to inform users that an update to ChEMBL_22 has been released. 

The new version, ChEMBL_22_1, corrects an issue with the targets assigned to some BindingDB assays in ChEMBL (src_id = 37). If you are using the BindingDB data from ChEMBL, we recommend you download this update. This update also incorporates the mol file/canonical smiles correction announced previously.

Updates have been made to BindingDB data in the ASSAYS, ACTIVITIES, CHEMBL_ID_LOOKUP, LIGAND_EFF and PREDICTED_BINDING_DOMAINS tables. Corrections have also been made to molfiles and canonical_smiles in the COMPOUND_STRUCTURES table. No changes have been made to other data sets or to other drug/compound/target tables in ChEMBL_22.

The new release files can be downloaded from:

A new version of the ChEMBL RDF is also available from:

Improvements to Web Services:

1. Support for SDF format.

The "molecule" endpoint now supports the SDF format. For example, if you access this URL: you will get information about 20 first compounds in JSON format. This URL will return an SDF file of the same molecule page. Please note, that there will be only 18 compounds in SDF output because two compounds from (CHEMBL6961 and CHEMBL6963) have no structure defined. You can easily join the information about the compound provided via JSON, XML or YML format with the structure by inspecting the

> <chembl_id>
sdf property.

Obviously the same format works for a single compound so this URL: will provide an information about Aspirin while this URL (or will return its structure.

The same can be applied to filters, for example this URL returns information about compounds with molecular weight <= 300 AND pref_name ending with nib. The in turn will return corresponding structures.

We also released a new version of Python client (version 0.8.50 available from PyPI and GitHub) that is aware about molfile support. Example code:

from chembl_webresource_client.new_client import new_client
molecules = new_client.molecule
molstring =  molecules.all()[0]

Iterating through all molecules you can get an sdf files with all the structures from chembl, pagination is handled by the client.

2. Structural alerts.

This new API endpoint provides information about compound's structural alerts. For example, on order to get structural alerts for CHEMBL266429, you can use this URL:

Then you can render each of the alerts to image, for example

As you can see, the corresponding fragment is highlighted.You can add all parameters that are present in the standard "image" endpoint so format (png or svg), engine (rdkit or indigo), ignoreCoords to recompute coordinates from scratch and dimensions to change image size.

3. Document terms (keywords)

We used pytextrank package to extract most relevant terms from all document abstracts stored in ChEMBL, along with their significance score against each document (the code we used to perform the extraction is available).

For example, in order to get all the relevant terms for CHEMBL1124199 document, ordered by the significance score descending, you can use this URL:

By parsing the results you can extract (term, score) pairs and multiply the score to get this list:

590 Inverse agonist activity
548 Thien-2-yl analogues
493 Pentylenetetrazole-induced convulsions
490 5'-alkyl group
477 Agonist activity
472 Inverse agonist
449 5-methylthien-3-yl derivative
427 Potent compounds
417 Vivo activity
403 Magnitude higher affinity

you can now use the HTML5 based word cloud and feed the list into this tool providing the following configuration:

  gridSize: Math.round(16 * $('#canvas').width() / 1024),
  drawOutOfBound: true,
  weightFactor: function (size) {
    return Math.pow(size/100.0, 2.3) * $('#canvas').width() / 1024;
  fontFamily: 'Times, serif',
  hover: function(){},
  color: function (word, weight) {
    return (weight > 500) ? '#f02222' : '#c09292';
  rotateRatio: 0.0,
  backgroundColor: '#ffe0e0'

and you will get this wordcloud:

We are planning to add this component to the new document report card.

It may be also interesting to ask about all the documents for a given keyword, for example in order to get all the documents for the "inverse agonist activity" term ordered by score descending, the following URL can be used:

4. Document similarity

As the last endpoint we added "document_similarity". For example to get all documents similar to CHEMBL1122254 document this URL can be used:

The endpoint uses the same protocol we use to generate the "Related Documents" section in the Document Report Card (

The current protocol is fairly simple (measuring overlap in compounds and targets between the two documents) and not very granular (it can be difficult to choose N most relevant documents from the 50 documents that the protocol returns). However, we are currently investigating alternative methods such as topic modelling.

5. Other improvements

There are some minor improvements as well:
 - Molecule endpoint includes three more properties as described in GitHub issue #106.
 - Target endpoint can be filtered by synonym name, in other words you can get a list of targets for a given gene name, for example:
or using a shortcut:
 - Target relation endpoint can be accessed by primary ID as described in GitHub issue #114.
 - parent_chembl_id filter working correctly for the molecule_form endpoint (for example ) as described in GitHub issue #113

The ChEMBL Team


Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site: .  Please see ChEMBL_29 release notes for full details of all changes in this release: New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no