Skip to main content

ChEMBL 25 and new web interface released

We are pleased to announce the release of ChEMBL 25 and our new web interface. This version of the database, prepared on 10/12/2018 contains:

  • 2,335,417 compound records
  • 1,879,206 compounds (of which 1,870,461 have mol files)
  • 15,504,603 activities
  • 1,125,387 assays
  • 12,482 targets
  • 72,271 documents


Data can be downloaded from the ChEMBL ftp site: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25

Please see ChEMBL_25 release notes for full details of all changes in this release: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/chembl_25_release_notes.txt


DATA CHANGES SINCE THE LAST RELEASE

# Deposited Data Sets:

Kuster Lab Chemical Proteomics Drug Profiling (src_id = 48, Document ChEMBL_ID = CHEMBL3991601):
Data have been included from the publication: The target landscape of clinical kinase drugs. Klaeger S, Heinzlmeir S and Wilhelm M et al (2017), Science, 358-6367 (https://doi.org/10.1126/science.aan4368)

# In Vivo Assay Classification:

A classification scheme has been created for in vivo assays. This is stored in the ASSAY_CLASSIFICATION table in the database schema and consists of a three-level classification. Level 1 corresponds to the top-levels of the ATC classification i.e., anatomical system/therapeutic area (e.g., CARDIOVASCULAR SYSTEM, MUSCULO-SKELETAL SYSTEM, NERVOUS SYSTEM). Level 2 provides a more fine-grained classification of the phenotype or biological process being studied (e.g., Learning and Memory, Anti-Obesity Activity, Gastric Function). Level three represents the specific in vivo assay being performed (e.g., Laser Induced Thrombosis, Hypoxia Tolerance Test in Rats, Paw Edema Test) and is assigned a specific ASSAY_CLASS_ID. Individual in vivo assays in the ChEMBL ASSAYS table are mapped to reference in-vivo assays in the ASSAY_CLASSIFICATION table via the ASSAY_CLASS_MAP table. More information about the classification scheme is available in the following publication: https://doi.org/10.1038/sdata.2018.230. The assay classification is available via web services and will be included in the ChEMBL web interface in the near future.

# Updated Data Sets:
Scientific Literature
Patent Bioactivity Data
BindingDB Database (corrections to compound structures)


WEB INTERFACE/WEB SERVICE CHANGES SINCE THE LAST RELEASE

# Web Interface:

The new ChEMBL web interface is now live at https://www.ebi.ac.uk/chembl (this replaces the previous beta version). The old ChEMBL web interface will be retired before the ChEMBL_26 release, but is available on the following URL until then: https://www.ebi.ac.uk/chembl/old. The new interface provides richer search and filtering capabilities. Documentation regarding this new functionality and frequently asked questions are available on our help pages: https://chembl.gitbook.io/chembl-interface-documentation/

# Changes to Web Services:

The Assay web service has been updated to include both assay_parameters and the in vivo assay classification for an assay (where applicable):
https://www.ebi.ac.uk/chembl/api/data/assay

A separate endpoint has also been created for the in vivo assay classification:
https://www.ebi.ac.uk/chembl/api/data/assay_class

The Activity web service has been updated to include activity_properties. The 'published_type', 'published_relation', 'published_value' and 'published_units' fields have also been renamed to 'type', 'relation', 'value' and 'units':
https://www.ebi.ac.uk/chembl/api/data/activity

A new endpoint has been created to retrieve supplementary data associated with an activity measurement (or list of measurements):
https://www.ebi.ac.uk/chembl/api/data/activity_supplementary_data_by_activity


SCHEMA CHANGES SINCE THE LAST RELEASE

# Tables Added:

ASSAY_CLASSIFICATION:
Classification scheme for phenotypic assays e.g., by therapeutic area, phenotype/process and assay type. Can be used to find standard assays for a particular disease area or phenotype e.g., anti-obesity assays. Currently data are available only for in vivo efficacy assays

COLUMN_NAME DATA_TYPE COMMENT
ASSAY_CLASS_ID NUMBER(9,0) Primary key
L1 VARCHAR2(100) High level classification e.g., by anatomical/therapeutic area
L2 VARCHAR2(100) Mid-level classification e.g., by phenotype/biological process
L3 VARCHAR2(1000) Fine-grained classification e.g., by assay type
CLASS_TYPE VARCHAR2(50) The type of assay being classified e.g., in vivo efficacy
SOURCE VARCHAR2(50) Source from which the assay class was obtained

ASSAY_CLASS_MAP:
Mapping table linking assays to classes in the ASSAY_CLASSIFICATION table

COLUMN_NAME DATA_TYPE COMMENT
ASS_CLS_MAP_ID NUMBER Primary key.
ASSAY_ID NUMBER assay_id is the foreign key that maps to the 'assays' table
ASSAY_CLASS_ID NUMBER assay_class_id is the foreign key that maps to the 'assay_classification' table


# Columns Removed:

ACTIVITIES:
PUBLISHED_TYPE (DEPRECATED in ChEMBL_24, now removed, replaced by TYPE)
PUBLISHED_RELATION (DEPRECATED in ChEMBL_24, now removed, replaced by RELATION)
PUBLISHED_VALUE (DEPRECATED in ChEMBL_24, now removed, replaced by VALUE)
PUBLISHED_UNITS (DEPRECATED in ChEMBL_24, now removed, replaced by UNITS)


Funding Acknowledgements:
Work contributing to ChEMBL_25 was funded by the Wellcome Trust, EMBL Member States, Open Targets, National Institutes of Health (NIH) Common Fund, EU Innovative Medicines Initiative (IMI) and EU Framework 7 programmes. Please see https://www.ebi.ac.uk/chembl/funding for more details.

The ChEMBL Team

Comments

Popular posts from this blog

UniChem 2.0

UniChem new beta interface and web services We are excited to announce that our UniChem beta site will become the default one on the 11th of May. The new system will allow us to better maintain UniChem and to bring new functionality in a more sustainable way. The current interface and web services will still be reachable for a period of time at https://www.ebi.ac.uk/unichem/legacy . In addition to it, the most popular legacy REST endpoints will also remain implemented in the new web services: https://www.ebi.ac.uk/unichem/api/docs#/Legacy Some downtime is expected during the swap.  What's new? UniChem’s current API and web application is implemented with a framework version that’s not maintained and the cost of updating it surpasses the cost of rebuilding it. In order to improve stability, security, and support the implementation and fast delivery of new features, we have decided to revamp our user-facing systems using the latest version of widely used and maintained frameworks, i

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 30 released

  We are pleased to announce the release of ChEMBL 30. This version of the database, prepared on 22/02/2022 contains: 2,786,911 compound records 2,157,379 compounds (of which 2,136,187 have mol files) 19,286,751 activities 1,458,215 assays 14,855 targets 84,092 documents Data can be downloaded from the ChEMBL FTP site: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/ Please see ChEMBL_30 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/chembl_30_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document ID CHEMBL4689842):   The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesize at least

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra