Skip to main content

New ChEMBL ligand-based target predictions docker image available


Resultado de imagen de zoltar fortune


One year ago we published a new version of our target prediction models and since then we've been working on its implementation for the upcoming ChEMBL 26 release.

What did we do?

First of all we re-trained the models with the LightGBM library instead of using scikit-learn. By doing this and tuning a bit the parameters our prediction timing improved by 2 orders of magnitude while keeping comparable prediction power. Having quicker models allowed us to easily implement a simple web service providing real time predictions.

Since we are currently migration to a more sustainable Kubernetes infrastructure it made sense to us to directly write the small target prediction web service as a cloud native app. We then decided to give OpenFaaS a try as a platform to deploy machine learning models.

OpenFaaS is a framework for building serverless functions with Docker and Kubernetes. It provides templates for deploying functions as REST endpoints in many different programming languages (Python, Node, Java, Ruby, go...).

Our target predicitons OpenFaaS function source code is now available in our github repository. A Docker image with ready to use ChEMBL 25 trained models is also available here.

Does this mean that you won't be able to use the models without an Kubernetes/OpenFaaS installation? No way! It is also easy to start an instance in your local machine:

docker run -p 8080:8080 chembl/mcp:25
# in a different shell
curl -X POST -H 'Accept: */*' -H 'Content-Type: application/json' -d '{"smiles": "CC(=O)Oc1ccccc1C(=O)O"}' http://127.0.0.1:8080

Bear in mind that the service needs to load the models into memory, so it may take few minutes until it returns predictions. The predictions returned by the service are the ones for the models with CCR ((sensitivity + specificity) / 2) >= 0.85

Comments

Chris said…
Hi, Tried to use Docker

docker run -p 8080:8080 chembl/mcp
Forking - python [index.py]
2020/02/06 10:54:02 Started logging stderr from function.
2020/02/06 10:54:02 Started logging stdout from function.
2020/02/06 10:54:02 OperationalMode: http
2020/02/06 10:54:02 Timeouts: read: 10s, write: 10s hard: 10s.
2020/02/06 10:54:02 Listening on port: 8080
2020/02/06 10:54:02 Writing lock-file to: /tmp/.lock
2020/02/06 10:54:02 Metrics listening on port: 8081
2020/02/06 10:54:31 Upstream HTTP request error: Post http://127.0.0.1:5000/: dial tcp 127.0.0.1:5000: connect: connection refused
2020/02/06 10:54:46 Forked function has terminated: signal: killed

when I try this in another Terminal window

curl -X POST -H 'Accept: */*' -H 'Content-Type: application/json' -d '{"smiles": "CC(=O)Oc1ccccc1C(=O)O"}' http://127.0.0.1:8080
Eloy said…
Hi Chris,

Are you using Docker on Windows or Mac?
It's default config (Docker on Windows and Mac actually runs inside a tiny VM) allows it only to use 2GB of RAM and it looks like it's killing the container process because Docker runs out of memory when loading the models.
You'll need to change Docker config to allow it to use 8GB of system memory.

Kind regards,
Eloy

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no