Skip to main content

Malaria inhibitor prediction platform



What a time! For most of us, this is the first time that we have experienced a pandemic and its impact on our daily life. Although working from home has become our routine in the ChEMBL group, we are still working as hard as ever! Of course, COVID-19 data is taking up some of our attention,  (see ChEMBL_27) but we are also continuing our work relevant to other diseases that affect large populations around the world.

Today, we are going to talk about malaria. As you may know, this disease of the Plasmodium parasite family threatens nearly half of the world’s population and led to over 400,000 deaths in 2019, predominantly among children in resource-limited areas in Africa, Asia and Central and South America. New therapies are desperately needed, in particular to cope with increased resistance against artemisinin-based combination therapies.

To help address this challenge, we have been involved in a public-private consortium that aims to deliver a tool to predict potential blood-stage malaria inhibitors and today we have a great announcement, which is the public release of MAIP!

MAIP is an acronym for  MAlaria Inhibitor Prediction. With MAIP we have  achieved what we believe has never been done before: a publicly-available malaria inhibition model built on more than 6 million compounds! Yes, 6 million! We believe this is one of the largest antimalarial datasets ever gathered.

Our project partners used their internal screening libraries, but rather than directly sharing their confidential compound structures and activity data, they each trained a QSAR model on their individual training set and shared the models with us.

Our role at ChEMBL was to develop the code to create and evaluate the models, to implement a consensus approach to combine the models and to develop the MAIP website. We worked hard to integrate all these information together and the result is a service that allows you to submit compounds to the consensus-based model.

There are many more things to say about this project, in particular regarding the technical aspects, but this would make a very large post. Instead, we suggest you wait for our upcoming paper. Meanwhile, you can also watch the record of the recent MAIP introduction webinar.

Please do try MAIP and let us know what you think. You can leave your comments on this thread or contact us at chembl-help@ebi.ac.uk

Comments

Popular posts from this blog

ChEMBL_27 SARS-CoV-2 release

The COVID-19 pandemic has resulted in an unprecedented effort across the global scientific community. Drug discovery groups are contributing in several ways, including the screening of compounds to identify those with potential anti-SARS-CoV-2 activity. When the compounds being assayed are marketed drugs or compounds in clinical development then this may identify potential repurposing opportunities (though there are many other factors to consider including safety and PK/PD considerations; see for example  https://www.medrxiv.org/content/10.1101/2020.04.16.20068379v1.full.pdf+html ). The results from such compound screening can also help inform and drive our understanding of the complex interplay between virus and host at different stages of infection. Several large-scale drug screening studies have now been described and made available as pre-prints or as peer-reviewed publications. The ChEMBL team has been following these developments with significant interest, and as a contr

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

ChEMBL 26 Released

We are pleased to announce the release of ChEMBL_26 This version of the database, prepared on 10/01/2020 contains: 2,425,876 compound records 1,950,765 compounds (of which 1,940,733 have mol files) 15,996,368 activities 1,221,311 assays 13,377 targets 76,076 documents You can query the ChEMBL 26 data online via the ChEMBL Interface and you can also download the data from the ChEMBL FTP site . Please see ChEMBL_26 release notes for full details of all changes in this release. Changes since the last release: * Deposited Data Sets: CO-ADD antimicrobial screening data: Two new data sets have been included from the Community for Open Access Drug Discovery (CO-ADD). These data sets are screening of the NIH NCI Natural Product Set III in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296183, DOI = 10.6019/CHEMBL4296183) and screening of the NIH NCI Diversity Set V in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296182, DOI = 10.601

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can train a single neural network as a binary multi-label classifier that will output the probability of activity/inactivity for each of the targets (tasks) for a given q

ChEMBL Compound Curation Pipeline

At the end of last year we mentioned that we are now using RDKit for our compound structure processing (see here ). Most excitingly, as a part of this we have been working with Greg Landrum the developer of RDKit over the last year to reimplement our  curation pipeline using RDKit.  The pipeline includes three functions: 1. Check Identifies and validates problem structures before they are added to the database 2. Standardize Standardises chemical structures according to a set of predefined ChEMBL business rules  3. GetParent Generates parent structures of multi-component compounds based on a set of rules and defined list of salts and solvents We are now pleased to announce that we are making all the code from this project freely available in GitHub .  The functions can also now be used through our ChEMBL Beaker   API.  Live notebook with examples available here . For ChEMBL26 (shortly to be released) we have created new molfiles for all the ChEM