Skip to main content

FPSim2 v0.2.0


One Woman Has To Know: Is This A Doodle Or Fried Chicken?

FPSim2 is the fast Python3 similarity search tool we are currently using in the ChEMBL interface. It's been a while since we first (and last) posted about it so we thought it deserved an update.

We've just released a new version (v0.2.0) and the highlights since we first talked about it are:
  • CPU intensive functions moved from Cython to C++ with Pybind11. Now also using libpopcnt
  • Improved speed, specially when dealing with some edge cases
  • Conda builds avaiable for Windows, Mac and Linux. There is no Conda for ARM but it also compiles and works in a Raspberry Pi! (and probably will do with the new ARM Macs as well)
  • Tversky search with a and b parameters (it previously had the 'substructure' feature with a and b respectively fixed to 1 and 0)
  • Distance matrix calculation of the whole set feature is now available
  • Zenodo DOI also available: 10.5281/zenodo.3902922
From a user point of view, the most interesting new feature is probably the distance matrix calculation. After the fingerprints file is generated, it is very easy to compute it:

from FPSim2 import FPSim2Engine

fp_filename = 'chembl_27.h5'
fpe = FPSim2Engine(fp_filename)
csr_matrix = fpe.symmetric_distance_matrix(0.7, n_workers=1)

To give an idea of the scale and the timescale of the problem, we've calculated the matrix on chembl_27 (1941405 compounds) using 2048 bit, radius 2 Morgan fingerprints. 1941405 * 1941405 similarities is a lot of them! 3.7 trillion, exactly.

Fortunately, the similarity matrix is symmetric (upper triangular and lower triangular matrices contain the same data) so we only needed to calculate (1941405 * 1941405 - 1941405) / 2 similarities. Still... this is 1.88 trillion similarities.

The role of the threshold is very important since it will help to skip a lot of calculations and save even more system memory. We can get the exact number of similarities that this calculation will need to do with a few lines of code:

from FPSim2.io.chem import get_bounds_range
from tqdm import tqdm

sims = 0
for idx, query in tqdm(enumerate(fpe.fps), total=fpe.fps.shape[0]):
    start, end = get_bounds_range(query, 0.7, 0, 0, fpe.popcnt_bins, "tanimoto")
    next_idx = idx + 1
    start = start if start > next_idx else next_idx
    s = end - start
    sims += s
print(sims)
1218544601003

1.2 trillion! The threshold saved 1/3 of the calculations and an insane amount of memory. But how much RAM did it save?

print(csr_matrix.data.shape[0])
9223048

3.7 trillion vs 9.2 million results. Each result is made of 2 32bit integers and 1 32bit float. 44TB vs 110MB. Yes, terabytes...

The calculation took 12.5h in a modern laptop using a single core and 3.5h using 4.

The output is a SciPy CSR sparse matrix that can be used in some scikit-learn and scikit-learn-extra algorithms.

The order of the compounds is the same one than in the fps file (remember that compounds get sorted by number of fingerprint features). To get the fps ids:

ids = fpe.fps[:, 0]

Distance matrix can be easily transformed into a similarity matrix.

csr_matrix.data = 1 - csr_matrix.data
# 0's in the diagonal of the matrix are implicit so they are not affected by the instruction above
csr_matrix.setdiag(1)

and also into a dense matrix as some algorithms, like MDS, require them:

# classic MDS doesn't work with missing values, so it's better to only use it with threshold 0.0
# in case you still want to run MDS on missing values matrices, this example uses the SMACOF algorithm which is known for being able to deal with missing data. Use it at your own risk!

from sklearn.manifold import MDS

dense_matrix = csr_matrix.todense()
# with metric=False it uses the SMACOF algorithm
mds = MDS(dissimilarity="precomputed", metric=False)
pos = mds.fit_transform(dense_matrix)

Bear in mind that, as shown before, to genenrate dense matrices from big datasets can be dangerous!

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

Mapping lists of IDs in ChEMBL

In order to facilitate the mapping of identifiers in ChEMBL, we have developed a new type of search in the ChEMBL Interface. Now, it is possible to enter a list of ChEMBL IDs and see a list of the corresponding entities. Here is an example: 1. Open the ChEMBL Interface , on the main search bar, click on 'Advanced Search': 2. Click on the 'Search by IDs' tab: 3. Select the source entity of the IDs and the destination entity that you want to map to: 4. Enter the identifiers, you can either paste them, or select a file to upload. When you paste IDs, by default it tries to detect the separator. You can also select from a list of separators to force a specific one: Alternatively, you can upload a file, the file can be compressed in GZIP and ZIP formats, this makes the transfer of the file to the ChEMBL servers faster. Examples of the files that can be uploaded to the search by IDs can be found  here . 5. Click on the search button: 6. You will be redirected to a search resul

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d