Skip to main content

Data checks

 


ChEMBL contains a broad range of binding, functional and ADMET type assays in formats ranging from in vitro single protein assays to anti proliferative cell-based assays. Some variation is expected, even for very similar assays, since these are often performed by different groups and institutes. ChEMBL includes references for all bioactivity values so that full assay details can be reviewed if needed, however there are a number of other data checks that can be used to identify potentially problematic results.

1) Data validity comments:

The data validity column was first included in ChEMBL v15 and flags activities with potential validity issues such as a non-standard unit for type or activities outside of the expected range. Users can review flagged activities and decide how these should be handled. The data validity column can be viewed on the interface (click 'Show/Hide columns' and select 'data validity comments') and can be found in the activities table in the full database.

* Acceptable ranges/units for standard_types are provided in the ACTIVITY_STDS_LOOKUP table. An exception is made for certain fragment-based activities (MW <= 350) where the data validity comment is not applied.

2) Confidence scores:

The confidence scores reflect both the target type and the confidence that the mapped target is correct (e.g. score 0 = no target assigned, score 9 = direct single protein target assigned). In cases where target protein accessions were unavailable during initial mapping, homologues from different species/strains have sometimes been assigned with lower confidence scores. Curation is ongoing and confidence scores may change between releases as additional assays are mapped (or re-mapped) to targets. The confidence scores can be viewed on the interface and are found in the assays table in the database.


3) Activity comments:

Activity comments capture the author or depositor’s overall activity conclusions and may take into account counter screens, curve fitting etc. It may be worth reviewing the activity comments to identify cases where apparently potent compounds have been deemed inactive by depositors. For further details on activity comments, see our previous Blog post. The activity comments can be viewed on the interface and are available in the activities table of the database.

4) Potential duplicates:

Bioactivity data is extracted from seven core journals and this may include secondary citations. Potential duplicates are flagged when identical compound, target, activity, type and unit values are reported. The potential duplicates field is available on the interface and is found in the activities table of the database.

5) Variants:

Protein variation can change the affinity of drugs for targets. On the interface, variant proteins are recorded in the assay descriptions which can be used to check whether activities correspond to variant or 'wild-type' targets. The variant sequences table was added to the database in version 22 and is linked to the assays table through the variant ID. The variant ID can be used to include or exclude variants from assay results. Curation is underway to annotate additional variants from historical assays (more on this to follow).

Hopefully this provides an idea of some of the available data checks. Questions? Please get in touch on the Helpdesk or have a look through our training materials and FAQs.

Data checks using Imatinib as an example:










Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...