Skip to main content

Data checks

 


ChEMBL contains a broad range of binding, functional and ADMET type assays in formats ranging from in vitro single protein assays to anti proliferative cell-based assays. Some variation is expected, even for very similar assays, since these are often performed by different groups and institutes. ChEMBL includes references for all bioactivity values so that full assay details can be reviewed if needed, however there are a number of other data checks that can be used to identify potentially problematic results.

1) Data validity comments:

The data validity column was first included in ChEMBL v15 and flags activities with potential validity issues such as a non-standard unit for type or activities outside of the expected range. Users can review flagged activities and decide how these should be handled. The data validity column can be viewed on the interface (click 'Show/Hide columns' and select 'data validity comments') and can be found in the activities table in the full database.

* Acceptable ranges/units for standard_types are provided in the ACTIVITY_STDS_LOOKUP table. An exception is made for certain fragment-based activities (MW <= 350) where the data validity comment is not applied.

2) Confidence scores:

The confidence scores reflect both the target type and the confidence that the mapped target is correct (e.g. score 0 = no target assigned, score 9 = direct single protein target assigned). In cases where target protein accessions were unavailable during initial mapping, homologues from different species/strains have sometimes been assigned with lower confidence scores. Curation is ongoing and confidence scores may change between releases as additional assays are mapped (or re-mapped) to targets. The confidence scores can be viewed on the interface and are found in the assays table in the database.


3) Activity comments:

Activity comments capture the author or depositor’s overall activity conclusions and may take into account counter screens, curve fitting etc. It may be worth reviewing the activity comments to identify cases where apparently potent compounds have been deemed inactive by depositors. For further details on activity comments, see our previous Blog post. The activity comments can be viewed on the interface and are available in the activities table of the database.

4) Potential duplicates:

Bioactivity data is extracted from seven core journals and this may include secondary citations. Potential duplicates are flagged when identical compound, target, activity, type and unit values are reported. The potential duplicates field is available on the interface and is found in the activities table of the database.

5) Variants:

Protein variation can change the affinity of drugs for targets. On the interface, variant proteins are recorded in the assay descriptions which can be used to check whether activities correspond to variant or 'wild-type' targets. The variant sequences table was added to the database in version 22 and is linked to the assays table through the variant ID. The variant ID can be used to include or exclude variants from assay results. Curation is underway to annotate additional variants from historical assays (more on this to follow).

Hopefully this provides an idea of some of the available data checks. Questions? Please get in touch on the Helpdesk or have a look through our training materials and FAQs.

Data checks using Imatinib as an example:










Comments

Popular posts from this blog

ChEMBL_27 SARS-CoV-2 release

The COVID-19 pandemic has resulted in an unprecedented effort across the global scientific community. Drug discovery groups are contributing in several ways, including the screening of compounds to identify those with potential anti-SARS-CoV-2 activity. When the compounds being assayed are marketed drugs or compounds in clinical development then this may identify potential repurposing opportunities (though there are many other factors to consider including safety and PK/PD considerations; see for example https://www.medrxiv.org/content/10.1101/2020.04.16.20068379v1.full.pdf+html). The results from such compound screening can also help inform and drive our understanding of the complex interplay between virus and host at different stages of infection.
Several large-scale drug screening studies have now been described and made available as pre-prints or as peer-reviewed publications. The ChEMBL team has been following these developments with significant interest, and as a contribution t…

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible?

Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook!

We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it.

With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below:
docker pull eloyfelix/rdkit_jupyter_clingdocker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_clingopen http://localhost:9999/notebooks/rdkit_cling.ipynb in a browser


FPSim2, a simple Python3 molecular similarity tool

FPSim2 is a new tool for fast similarity search on big compound datasets (>100 million) being developed at ChEMBL. We started developing it as we needed a Python3 library able to run either in memory or out-of-core fast similarity searches on such dataset sizes.

It's written in Python/Cython and features:
A fast population count algorithm (builtin-popcnt-unrolled) from https://github.com/WojciechMula/sse-popcount using SIMD instructions.Bounds for sub-linear speed-ups from 10.1021/ci600358fA compressed file format with optimised read speed based in PyTables and BLOSCUse of multiple cores in a single search In memory and on disk search modesSimple and easy to use
Source code is available on github and Conda packages are also available for either mac or linux. To install it type:

conda install rdkit -c rdkitconda install fpsim2 -c efelix
Try it with docker (much better performance than binder):

    docker pull eloyfelix/fpsim2    docker run -p 9999:9999 eloyfelix/fpsim2    open htt…

2019 and ChEMBL – News, jobs and birthdays

Happy New Year from the ChEMBL Group to all our users and collaborators. 
Firstly, do you want a new challenge in 2019?  If so, we have a position for a bioinformatician in the ChEMBL Team to develop pipelines for identifying links between therapeutic targets, drugs and diseases.  You will be based in the ChEMBL team but also work in collaboration with the exciting Open Targets initiative.  More details can be found here(closing date 24thJanuary). 
In case you missed it, we published a paper at the end of last on the latest developments of the ChEMBL database “ChEMBL: towards direct deposition of bioassay data”. You can read it here.  Highlights include bioactivity data from patents, human pharmacokinetic data from prescribing information, deposited data from neglected disease screening and data from the IMI funded K4DD project.  We have also added a lot of new annotations on the therapeutic targets and indications for clinical candidates and marketed drugs to ChEMBL.  Importantly we ha…

ChEMBL 25 and new web interface released

We are pleased to announce the release of ChEMBL 25 and our new web interface. This version of the database, prepared on 10/12/2018 contains:

2,335,417 compound records1,879,206 compounds (of which 1,870,461 have mol files)15,504,603 activities1,125,387 assays12,482 targets72,271 documents

Data can be downloaded from the ChEMBL ftp site: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25

Please see ChEMBL_25 release notes for full details of all changes in this release: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/chembl_25_release_notes.txt


DATA CHANGES SINCE THE LAST RELEASE

# Deposited Data Sets:

Kuster Lab Chemical Proteomics Drug Profiling (src_id = 48, Document ChEMBL_ID = CHEMBL3991601):
Data have been included from the publication: The target landscape of clinical kinase drugs. Klaeger S, Heinzlmeir S and Wilhelm M et al (2017), Science, 358-6367 (https://doi.org/10.1126/science.aan4368)

# In Vivo Assay Classification:

A classification…