Skip to main content

Identifying relevant compounds in patents

 


As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves. 

The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the current SureChEMBL data extraction pipeline cannot distinguish between the different types of chemicals described in a patent document - it simply extracts all identified molecules. Some simple metrics can be used to filter out the worst offenders. For example, the corpus frequency can be used to remove molecules that are seen thousands of times over many patents (not novel) and chemical descriptors can be used to filter molecules that are particularly small (e.g., fragments, ions, solvents) or don't have drug-like properties. However, there is still much room for improvement and a need for additional methods to more accurately identify claimed compounds.

This paper on the 'Identification of the Core Chemical Structure in SureChEMBL Patents' has recently been published by Maria Falaguera and Jordi Mestres, and the resulting data set is available to download from the SureChEMBL FTP site: https://ftp.ebi.ac.uk/pub/databases/chembl/SureChEMBLccs. The paper describes a filtering protocol to automatically select the core chemical structures best describing the pharmacologically relevant molecules in a patent. The method is based on identifying maximum common substructures (MCSs) for all compounds in a patent, using RDKit. These are filtered to remove those that are particularly promiscuous, then candidate MCSs are chosen according to coverage, homogeneity and inclusion criteria, to identify those that are most likely to represent the core chemical structure of the patent claim. These candidate MCSs are then used to retain only molecules from the patent that contain at least one such substructure (or those with high similarity to a molecule that does). 

The method has been validated against a set of patents containing pharmacology data that have been manually extracted for inclusion in ChEMBL. Since the compounds included in ChEMBL all have reported activity measurements in the patents, it is reasonable to assume these are highly relevant molecules. The filtering method was able to recover 92.5% of these molecules from the corresponding patents (see the paper for lots more detail on this). Finally, the method was then run on the set of 240K US patents with medical classification codes (A61K*, excluding dental, cosmetic, antibodies etc), resulting in a set of 5.9m molecules that form closely related chemical series (65.3% of the total molecules). As mentioned above, this data set can be downloaded from SureChEMBL.

We'd be keen to hear from anyone who finds this data useful; we are actively exploring a number of different ways to improve the SureChEMBL system including the accuracy of its annotations. 

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...