Skip to main content

What is Max Phase in ChEMBL?

ChEMBL contains information on drugs that have been approved for treatment of a specific disease / diagnosis (an indication) within a region of the world (e.g. FDA drugs are approved for use in the United States), and clinical candidate drugs that are being investigated for an indication during the clinical trials process. 

The maximum phase of development for the compound across all indications is assigned a category called 'max_phase' (the value in brackets is used in the downloadable ChEMBL database in the 'molecule_dictionary' table):

  • Approved (4): A marketed drug e.g. AMINOPHYLLINE (CHEMBL1370561) is an FDA approved drug for treatment of asthma. 
  • Phase 3 (3): A clinical candidate drug in Phase 3 Clinical Trials e.g. TEGOPRAZAN (CHEMBL4297583) is under clinical investigation for treatment of peptic ulcer at Phase 3, and also liver disease at Phase 1. 
  • Phase 2 (2): A clinical candidate drug in Phase 2 Clinical Trials e.g. NEVANIMIBE HYDROCHLORIDE (CHEMBL542103) is under clinical investigation for treatment of Cushing syndrome at Phase 2. Note that this category also includes a small number of trials that are defined by ClinicalTrials.gov as "Phase 2/Phase 3".
  • Phase 1 (1): A clinical candidate drug in Phase 1 Clinical Trials e.g. SALCAPROZATE SODIUM (CHEMBL2107027) is under clinical investigation for treatment of diabetes mellitus. Note that this category also includes a small number of trials that are defined by ClinicalTrials.gov as "Phase 1/Phase 2".
  • Early Phase 1 (0.5): A clinical candidate drug in Early Phase 1 Clinical Trials e.g. CITRULLINE MALATE (CHEMBL4297667) is under clinical investigation for coronary artery disease at Early Phase 1.
  • Unknown (-1): Clinical Phase unknown for drug or clinical candidate drug ie where ChEMBL cannot assign a clinical phase e.g. NALIDIXATE SODIUM (CHEMBL1255939) is known to be a clinical candidate drug because it has a USAN name, however ChEMBL has not been able to map a disease indication for this compound via its clinical trials pipeline and therefore its max_phase is assigned as Unknown. By contrast, the parent compound (NALIDIXIC ACID, CHEMBL5) is an approved drug for treatment of bacterial disease.  
  • Preclinical (NULL): preclinical compounds with bioactivity data e.g. CHEMBL6300 is a preclinical compound with bioactivity data that has usually been extracted from scientific literature. However, the sources of drug and clinical candidate drug information in ChEMBL do not show that this compound has reached clinical trials and therefore the max_phase is set to null. 
By contrast, the 'max_phase_for_ind' field in the 'drug_indication' table in the downloadable ChEMBL database contains the maximum phase of development for the drug or clinical candidate drug for a specified indication. The numbering system remains identical to that described above for max_phase.  

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

Mapping lists of IDs in ChEMBL

In order to facilitate the mapping of identifiers in ChEMBL, we have developed a new type of search in the ChEMBL Interface. Now, it is possible to enter a list of ChEMBL IDs and see a list of the corresponding entities. Here is an example: 1. Open the ChEMBL Interface , on the main search bar, click on 'Advanced Search': 2. Click on the 'Search by IDs' tab: 3. Select the source entity of the IDs and the destination entity that you want to map to: 4. Enter the identifiers, you can either paste them, or select a file to upload. When you paste IDs, by default it tries to detect the separator. You can also select from a list of separators to force a specific one: Alternatively, you can upload a file, the file can be compressed in GZIP and ZIP formats, this makes the transfer of the file to the ChEMBL servers faster. Examples of the files that can be uploaded to the search by IDs can be found  here . 5. Click on the search button: 6. You will be redirected to a search resul

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid