Skip to main content

Query Privacy in ChEMBL


We have been asked several times for all the user-generated queries of ChEMBL - i.e. the structures sketched in to the interface that are then searched against the database. We will not (and in fact, physically can't) share these. Sorry. It is against both our institutional privacy policy, and standard Terms of Use, and also we've engineered the app to avoid us 'storing' any of this information where at all possible (e.g. in avoiding /tmp type fluff, minimizing residency time in caches, etc.).

There are clearly some advantages in pooling or analysing website search data - it highlights interesting trends, something becoming more interesting to a user community can spot emerging events, etc. It can alert to flu outbreaks (there was a Science paper from google on this, don't have the reference handy though - you may be able to find it with google though.....). There is a huge interest in many sites that I use in tracking and analysing query terms and usage patterns, and in some contexts this is just the thing to do - like when ebay teases me (and surely of all the tortured obsessive souls on the planet, it is just me and me alone) with a rare phosphor or perforation machin variant I don't have.

The types of query that people perform can clearly also be used to develop ways of improving a website, or specifically the performance of search queries - and for algorithm development this information can be like gold-dust. There are now many chemical fingerprint systems available, and adapting the features/structures of these to typical user queries is really valuable in their development.

There are essentially two distinct aspects to user's expectations/rights of privacy when using a website like ChEMBL.

  • There is a personal privacy issue - 'why is John Overington interested in compounds for the treatment of obesity?'. This is an primarily an embarrassment sort of thing ('hey, is this guy a bit chubby?'), or maybe a commercially sensitive thing ('he's interested in obesity stuff; heh, let's raise the price for him', or 'let's show him some adverts for chips', or 'let's contact his rival and let them know he's interested in his weight'). These latter things are behind the feature where you first search for a flight and the price is great, then the next time you look, it's gone up - allegedly.
  • There's a more fundamental IP issue though -  The simple disclosure of a search term can be commercially damaging, and potentially stop the development of life-saving therapies. The simplest case is chemical structure and drug patents. The most important patent claim in drug discovery is to have composition of matter (and don't get all hissy over pharma misusing the patent system, since patents are absolutely essential for the development of new medicines, the treatment of disease, improvement of food supplies, for funding future R&D, for a source of employment, license revenues to Universities, and taxation revenues, etc). This composition of matter is a claim of a novel chemical structure, that no-one has disclosed before, and it is useful for something. If the structure is not novel, then the patent can be readily invalidated.
Hopefully, you'll understand our reasons for maintaining both user and query privacy.

For an extra clear clarification - we do not, and cannot examine queries of users ourselves within the development team here at the EBI. In case you read the above text as sharing stuff solely with third parties.

Your use of ChEMBL is private, and always will be.


Comments

Bio to Chem said…
John, in regard to your second point there is (unless anyone knows otherwise) no patent case law precedent for a successful composition of matter opposition or invalidation based on the interception of chemical (or sequence for that matter) database queries. Strictly speaking the issue is the public exposure thereof in silico. Ipso facto I'm not sure your (or anyone els's) server cache would count as this in court (hacking in would be criminal interception). Until such time as a test case is prosecuted successful the risk remains close to zero, compared to, say, putting your lead structure on a poster.
jpo said…
You are right. There are some legal defences for 'accidental' disclosure, and also for malicious interception sort of thing. But these seem to go back in spirit to the olden days of real physical post and not electronic transmission.

But I think you misread the post - or a lot more likely I wasn't clear.

The point I was making that you can lose novelty by 'publishing' the query list. The sort of thing I mean is sharing the query list with 'the public', making the query list downloadable, opening up a searchable database of the queries, etc.

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid