Skip to main content

New Drug Approvals 2012 - Pt. XXVII - Choline C-11



On September 12, FDA approved Choline C-11, an intravenous radioactive diagnostic agent to be used as tracer during Positron Emission Tomography (PET) scan to help detect sites of recurrent Prostate Cancer (OMIM : 176807 ; MeSH : D011471) .

Prostate cancer is the most common cause of death from cancer in men over age 75, and is rarely found in men younger that 40. Unlike many other cancers, prostate cancer usually progresses very slowly. Sometimes the cancer cells may metastasize from the prostate to other parts of body. Overall, it is estimated to be the sixth leading cause of cancer-related death in men.

Choline is a naturally occurring component of the numerous Vitamin-B complex, and is necessary for normal cell structure and signalling. Choline C-11 is a radiolabeled synthetic analog of choline that releases a positron by beta decay which can be visualised by PET. Choline is rapidly taken up by the prostate cells and this allows the prostate to be imaged. 


Choline, a precursor molecule essential for the biosynthesis of phospholipids which are the structural components of cell membranes, as well as modulation of trans-membrane signalling. Increased activity of phospholipid synthesis has been associated with increased cell proliferation and the transformation process that occurs in tumour cells.
Choline C-11 is a positron emitting radiopharmaceutical that is used for diagnostic purpose in conjunction with PET imaging. The active ingredient is Choline C-11 and each millilitre of the injection contains 148 MBq to 1225 MBq of the active ingredient.

IUPAC Name (Choline) : 2-hydroxy-N,N,N-trimethylethanaminium
Canonical Smiles : [Cl-].[11CH3][N+](C)(C)CCO
Standard InChI : 1S/C5H14NO.ClH/c1-6(2,3)4-5-7;/h7H,4-5H2,1-3H3;1H/q+1;/p-1/i1-1;

Following intravenous administration, Choline C-11 distributes mainly to the pancreas, kidney, liver, spleen and colon. The radioactivity accumulated rapidly within the prostate and peak uptake appeared with in 5 mins following the administration. Choline C-11 undergoes metabolism resulting in the detection of 11C-betaine as the major metabolite in blood. The rate of excretion of Choline C-11 in urine was 0.014 mL/min.

Choline C-11 has been developed and marketed by Mayo Clinic.

Full prescribing information is found here.

Comments

Popular posts from this blog

UniChem 2.0

UniChem new beta interface and web services We are excited to announce that our UniChem beta site will become the default one on the 11th of May. The new system will allow us to better maintain UniChem and to bring new functionality in a more sustainable way. The current interface and web services will still be reachable for a period of time at https://www.ebi.ac.uk/unichem/legacy . In addition to it, the most popular legacy REST endpoints will also remain implemented in the new web services: https://www.ebi.ac.uk/unichem/api/docs#/Legacy Some downtime is expected during the swap.  What's new? UniChem’s current API and web application is implemented with a framework version that’s not maintained and the cost of updating it surpasses the cost of rebuilding it. In order to improve stability, security, and support the implementation and fast delivery of new features, we have decided to revamp our user-facing systems using the latest version of widely used and maintained frameworks, i

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

ChEMBL 30 released

  We are pleased to announce the release of ChEMBL 30. This version of the database, prepared on 22/02/2022 contains: 2,786,911 compound records 2,157,379 compounds (of which 2,136,187 have mol files) 19,286,751 activities 1,458,215 assays 14,855 targets 84,092 documents Data can be downloaded from the ChEMBL FTP site: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/ Please see ChEMBL_30 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/chembl_30_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document ID CHEMBL4689842):   The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesize at least

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra