Skip to main content

To Remove Or Not To Remove - That Is The Question


During the course of standard compound curation, I come across problem inorganic compounds. An example of these are Cisplatin and Transplatin. These compounds only differ in the orientation of their complex bonds but complex bonds cannot be drawn in a standard molfile without causing InChI issues. At the  moment, they are kept separate by showing standard bonds between the Pt, Cl and NH3 in Cisplatin, but we have removed the bonds altogether for Transplatin. This is not an ideal situation, nor an accurate structural representation.

Another example is the compound, below left, and how it should look as a complex, right, from the paper:



At the moment, there are approximately 1,800 cases like this, which only accounts for 0.15% of the entire ChEMBL compound set.

What we are proposing to do is to remove the structures for these complex compounds and to keep only their names and all of the associated biological data. This would then treat them in a similar way to the antibodies and large peptides that we store in ChEMBL.

So, we have set up an online private Doodle Poll for you, our users, to have your vote on whether we should remove the structures and keep the biological data, or leave them as they are.

All comments are welcome.


Louisa

Comments

Noel O'Boyle said…
Hi Louisa, you didn't say exactly whtat the proble is. Is it not possible to use the InChI software to generate different InChIs for cis and trans-platin? The "don't disconnect metals" option (/RecMet) is worth trying.

BTW, the link to the compound above is a different structure than shown in the image.
Louisa said…
Hi Noel

No, you can't generate different InChIs for trans and cisplatin.

The structures shown were taken from the original paper and ChEMBL. It was used to illustrate how covalent bonds are being used to show complex compounds where co-ordinate dative bonds should be used. Unfortunately, coordinate bonds do not give an acceptable InChI.
In the case shown on the post, covalent bonds have been used in place of coordinate bonds and so the NH3 group and NH2R group have lost a hydrogen so as not to have a charge.
As there are only few cases of this, we would like to remove the structure but keep the data. That way, we are not storing compounds with 'incorrect' bond types.

thanks
Louisa

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the