Skip to main content

Removal of Metal-Containing Compounds



Further to my post a few months ago (To Remove or Not to Remove) about removing certain problem metal-containing compounds, we have now come up with a plan of what to do.
Instead of labeling this curation as ‘removal of inorganics’, or ‘removal of organometallics’, we simply want this to be known as ‘removal of some metal-containing compounds’.

The criterion that we used was to exclude a large proportion of compounds that contained a metal, apart from cases where a metal was commonly found as part of a pharmaceutical preparation (e.g. Ranitidine Bismuth Citrate CHEMBL2111286, Silver Sulfadiazine CHEMBL1382627, Bacitracin Zinc CHEMBL2096639). The reasoning behind the removal of such compounds was that most of these metals are bonded to the rest of the compound components via coordinate bonds. However, due to InChI limitations, there is no way of creating a Standard InChI that retains coordinate bond information. As we use Standard InChI as the main compound identifier of uniqueness in ChEMBL, it was decided to exclude the structures altogether.

This change will come into effect with the release of ChEMBL_17, and only affects ~3,200 compounds. The compound image on the interface will be replaced with an icon that shows it’s a metal-containing compound (see picture, above). The structures will not be part of the download set on the FTP site, but we will retain the molecular formula in both the downloads and on the ChEMBL interface, so that you can still see the elemental make up of the compound. We will, of course, retain all of the bioactivity data on these compounds.

Any questions, please feel free to contact chembl-help@ebi.ac.uk

Comments

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Using ChEMBL web services via proxy.

It is common practice for organizations and companies to make use of proxy servers to connect to services outside their network. This can cause problems for users of the ChEMBL web services who sit behind a proxy server. So to help those users who have asked, we provide the following quick guide, which demonstrates how to access ChEMBL web services via a proxy. Most software libraries respect proxy settings from environmental variables. You can set the proxy variable once, normally HTTP_PROXY and then use that variable to set other related proxy environment variables: Or if you have different proxies responsible for different protocols: On Windows, this would be: If you are accessing the ChEMBL web services programmatically and you prefer not to clutter your environment, you can consider adding the proxy settings to your scripts. Here are some python based recipes: 1. Official ChEMBL client library If you are working in a python based environment, we recommend

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

Using autoencoders for molecule generation

Some time ago we found the following paper https://arxiv.org/abs/1610.02415 so we decided to take a look at it and train the described model using ChEMBL. Lucky us, we also found two open source implementations of the model; the original authors one https://github.com/HIPS/molecule-autoencoder and https://github.com/maxhodak/keras-molecules . We decided to rely on the last one as the original author states that it might be easier to have greater success using it. What is the paper about? It describes how molecules can be generated and specifically designed using autoencoders. First of all we are going to give some simple and not very technical introduction for those that are not familiar with autoencoders and then go through a ipython notebook showing few examples of how to use it. Autoencoder introduction Autoencoders are one of the many different and popular unsupervised deep learning algorithms used nowadays for many different fields and purposes. These work wi