Skip to main content

New Drug Approvals 2013 - Pt. XXIV - Sofosbuvir (Sovaldi ™)





ATC code (stem): J05AB
Wikipedia: Sofosbuvir
ChEMBL: CHEMBL1259059

On December 6, 2013, the FDA approved sofosbuvir for the treatment of patients with chronic hepatitis C infection. Sofosbuvir is intended for use as a component in combination treatments, depending on the type of hepatitis C either alongside Ribavirin alone, or in combination with both Ribavirin and peginterferon-alpha. Earlier in 2013, the FDA had already approved
Simeprevir for the treatment of this condition.

Hepatitis C is an infectious disease that affects primarily the liver and is caused by the hepatitis C virus (HCV), which belongs to the family of Flaviviridae and has a positive sense single stranded RNA genome of 9,600 nucleotides. Infection is mainly by blood-to-blood contact, through sharing or reuse of syringes or unsterilized medical equipment. Initially, the infection progresses without symptoms, and only becomes apparent in the chronic stages when liver damage leads to symptoms such as bleeding, jaundice, liver cancer and hepatic encephalopathy.

Sofosbuvir is a nucleotide analog inhibitor of the viral RNA polymerase (NS5b, Uniprot genome polyprotein: P26664, 2421-3011, PDB 3hkw). Viral RNA polymerases differ significantly from eukaryotic and bacterial polymerases both in sequence and three-dimensional structure. Thus, sofosbuvir inhibits only the amplification of the viral RNA genome and not endogenous transcription in the host organism by entering the polymerase as a substrate and terminating the transcript chain. The IC50 measured against NS5b ranged between 0.7 and 2.6 micro-molar, depending on the genotpye of the HCV isolate.

Structure of HCV NS5b, genotype 1a generated in pymol from PDB 3hkw.
 Sofosbuvir is a prodrug that is converted to the active form through a mono-phosphorylated intermediate. In contrast to other nucleotide analog inhibitors, the intermediate is formed in a step that cleaves off the groups attached to the phosphate group already present in sofosbuvir. This step is a lot faster than the enzymatic addition of a phosphate group that is required with other nucleotide analogs. The enzymes catalyzing this initial step include the lysosomal protective protein (Uniprot P10619), liver carboxylesterase 1 (Uniprot P23141) and Hint1 (Uniprot P49773). [1]



 Canonical SMILES: CC(C)OC(=O)[C@H](C)N[P@](=O)(OC[C@H]1O[C@@H](N2C=CC(=O)NC2=O)[C@](C)(F)[C@@H]1O)Oc3ccccc3 
Std-InChI: InChI=1S/C22H29FN3O9P/c1-13(2)33-19(29)14(3)25-36(31,35-15-8-6-5-7-9-15)32-12-16-18(28)22(4,23)20(34-16)26-11-10-17(27)24-21(26)30/h5-11,13-14,16,18,20,28H,12H2,1-4H3,(H,25,31)(H,24,27,30)/t14-,16+,18+,20+,22+,36-/m0/s1
Std InChI key: TTZHDVOVKQGIBA-IQWMDFIBSA-N

Sofosbuvir is an off-white crystalline substance that is slightly soluble in water. The molecular weight and logP are 529.45 Da and 0.92, respectively. Note the relatively low logP charateristic of nucleotide analog compounds.

The recommended daily dose of sofosbuvir is 400mg in a single tablet. Peak plasma concentration of the active metabolite are reached after 30-120 minutes post administration. The clearance is primarily through the kidney, with a half-life of 0.4 hours for sofosbuvir and 27 hours for its metabolite.  Sofosbuvir is a substrate of P-gp, and therefore inducers of P-gp, such as rifampicin and St John's wort are contraindicated for use with sofosbuvir.

Reported side effects of sofosbuvir include fatigue, headache, nausea, insomnia and anemia.

Sofosbuvir is marketed by Gilead under the name Sovaldi.

References:
[1] Murakami E, Tolstykh T, Bao H, Niu C, Steuer HMM, Bao D, Chang W, Espiritu C, Bansal S, Lam AM, Otto MJ, Sofia MJ, Furman P a: Mechanism of activation of PSI-7851 and its diastereoisomer PSI-7977. J. Biol. Chem. 2010, 285:34337–47.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

Mapping lists of IDs in ChEMBL

In order to facilitate the mapping of identifiers in ChEMBL, we have developed a new type of search in the ChEMBL Interface. Now, it is possible to enter a list of ChEMBL IDs and see a list of the corresponding entities. Here is an example: 1. Open the ChEMBL Interface , on the main search bar, click on 'Advanced Search': 2. Click on the 'Search by IDs' tab: 3. Select the source entity of the IDs and the destination entity that you want to map to: 4. Enter the identifiers, you can either paste them, or select a file to upload. When you paste IDs, by default it tries to detect the separator. You can also select from a list of separators to force a specific one: Alternatively, you can upload a file, the file can be compressed in GZIP and ZIP formats, this makes the transfer of the file to the ChEMBL servers faster. Examples of the files that can be uploaded to the search by IDs can be found  here . 5. Click on the search button: 6. You will be redirected to a search resul