Skip to main content

New Drug Approvals 2014 - Pt. III - Droxidopa (Northera ™)



ATC Code: Unavailable
Wikipedia: Droxidopa
ChEMBL: CHEMBL2103827

On February 18th the FDA approved Droxidopa (tarde name Northera™) for the treatment of neurogenic orthostatic hypotension (NOH). NOH is a rare, chronic and often debilitating drop in blood pressure upon standing, and is associated with Parkinson's disease, multiple-system atrophy, and pure autonomic failure. Symptoms of NOH include dizziness, light-headedness, blurred vision, fatigue and fainting when a person stands. 

Target(s)
Droxidopa (also known as L-DOPS, L-threo-dihydroxyphenylserine, and SM-5688) is a prodrug which can be converted to norepinephrine (noradrenaline) by Aromatic L-amino acid decarboxylase (Uniprot P20711 ; EC 4.1.1.28). Norepinephrine in turn can be converted to epinephrine by Phenylethanolamine N-methyltransferase ( Uniprot P11086 ). Droxidopa can cross the blood brain barrier, contrary to epinephrine and norepinephrine.  Patients with NOH suffer from depleted levels of epinephrine and norepinephrine. Droxidopa increases the levels of both in the peripheral nervous system and leads to an increased heart rate and blood pressure.



Droxidopa (CHEMBL2103827Pubchem : 92974 ) is a small molecule drug with a molecular weight of 213.2 Da, an AlogP of -2.92, 3 rotatable bonds, and no rule of 5 violations.

Canonical SMILES : N[C@@H]([C@H](O)c1ccc(O)c(O)c1)C(=O)O
InChi: InChI=1S/C9H11NO5/c10-7(9(14)15)8(13)4-1-2-5(11)6(12)3-4/h1-3,7-8,11-13H,10H2,(H,14,15)/t7-,8+/m0/s1


Dosage
Droxidopa starting dose is 100mg three times daily (which can be titrated to a maximum of 600 mg three times daily). One dose should be taken in late afternoon at least 3 hours prior to bedtime to reduce the potential for supine hypertension during sleep.

Warnings
Neuroleptic malignant syndrome (NMS) has been reported with Droxidopa use during post-marketing surveillance in Japan. NMS is an uncommon but life-threatening syndrome characterized by fever or hyperthermia, muscle rigidity, involuntary movements, altered consciousness, and mental status changes.

Ischemic Heart Disease, Arrhythmias, and Congestive Heart Failure
Droxidopa may exacerbate existing ischemic heart disease, arrhythmias and congestive heart failure.

Pharmacokinetics
Absorption
Cmax of droxidopa were reached by 1 - 4 hours post-dose in healthy volunteers. High-fat meals have a moderate impact on droxidopa exposure with Cmax and AUC decreasing by 35% and 20% respectively, and delaying Cmax by approximately 2 hours.

Distribution
Droxidopa exhibits plasma protein binding of 75% at 100 ng/mL and 26% at 10,000 ng/mL with an apparent volume of distribution of about 200 L.

Metabolism
The metabolism of droxidopa is mediated by catecholamine pathway and not through the cytochrome P450 system. Plasma norepinephrine levels peak within 3 to 4 hours (generally < 1 ng/mL) and variable with no consistent relationship with dose. The contribution of the metabolites of droxidopa other than norepinephrine to its pharmacological effects is not well understood.

Elimination
The mean elimination half-life of droxidopa is 2.5 hours. The major route of elimination of droxidopa and its metabolites is via the kidneys.

Drug Interactions 
No dedicated drug-drug interaction studies were performed for droxidopa. Carbidopa, a peripheral dopa-decarboxylase inhibitor, could prevent the conversion of droxidopa to norepinephrine outside of the central nervous system (CNS).

L-DOPA/dopa-decarboxylase inhibitor combination drugs decreased clearance of droxidopa, increased AUC to droxidopa approximately 100%, and increased exposure to 3-OM-DOPS of approximately 50%. However, it was found that the decreased clearance was not associated with a significant need for a different treatment dose or increases in associated adverse events.

Dopamine agonists, amantadine derivatives, and MAO-B inhibitors do not appear to effect droxidopa clearance, no dose adjustments are required. 

Pregnancy
Droxidopa is classified as pregnancy category C. There are no adequate and well controlled trials in pregnant women.

The license holder is Chelsea Therapeutics, the prescribing information can be found here.

Comments

Popular posts from this blog

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

ChEMBL 26 Released

We are pleased to announce the release of ChEMBL_26 This version of the database, prepared on 10/01/2020 contains: 2,425,876 compound records 1,950,765 compounds (of which 1,940,733 have mol files) 15,996,368 activities 1,221,311 assays 13,377 targets 76,076 documents You can query the ChEMBL 26 data online via the ChEMBL Interface and you can also download the data from the ChEMBL FTP site . Please see ChEMBL_26 release notes for full details of all changes in this release. Changes since the last release: * Deposited Data Sets: CO-ADD antimicrobial screening data: Two new data sets have been included from the Community for Open Access Drug Discovery (CO-ADD). These data sets are screening of the NIH NCI Natural Product Set III in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296183, DOI = 10.6019/CHEMBL4296183) and screening of the NIH NCI Diversity Set V in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296182, DOI = 10.601