Skip to main content

ChEMBL_18 Released




We are pleased to announce the release of ChEMBL_18. This version of the database was prepared on 12th March 2014 and contains:
  • 1,566,466 compound records
  • 1,359,508 compounds (of which 1,352,681 have mol files)
  • 12,419,715 activities
  • 1,042,374 assays
  • 9,414 targets
  • 53,298 documents

The web front end at https://www.ebi.ac.uk/chembl is now connected to the ChEMBL 18 data, but you can also download the data from the ChEMBL ftpsite. Please see ChEMBL_18 release notes for full details of all changes in this release.

Changes since the last release

 

New data sets

 

The ChEMBL_18 release includes the following new datasets:
  • University of Vienna G-glycoprotein (pgp) screening data
  • UCSF MMV Malaria Box screening data
  • DNDi Trypanosoma cruzi screening data
  • DrugMatrix in vivo toxicology data
In addition, 43,335 new compound records from 2015 publications in the primary literature have been added to this release. Approved drug and usan data have also been updated, with 103 new structures added.

 

Updates to the protein family classification

 

A review and update of the ChEMBL protein family classification has been carried out. The main changes are listed below:

  • New ion channel/transporter classification, based on the BPS classification
  • New epigenetic protein classification, based on SGC/ChromoHub classification
  • Modification of kinase classification, to follow Human Kinome classification

 

Assay classification and ontology mapping

 

The following annotations and classifications have been added to the ChEMBL assay data:
  • Classification of assay format (e.g., biochemical, cell-based, organism-based) using BioAssay Ontology
  • Classification of endpoints (e.g., IC50, AUC, Ki) using BioAssay Ontology
  • Addition of Physicochemical and Toxicity assay type classification
  • Mapping of assay cell-lines to CLO, EFO and Cellosaurus
  • Mapping of standard units to Unit Ontology and QUDT

 

 

Capture of assay parameters

 

A new table in the database (assay_parameters), is used to capture additional properties of assays such as dose, administration route, time points. These additional parameters are displayed on the Assay Report Card.

 

Target predictions

 

Bioactivity data for single protein targets in ChEMBL have been used to train and validate two Naive Bayesian multi-label classifier models (at <= 1uM and <= 10uM bioactivity cutoffs respectively). These models have been subsequently employed to predict biological targets for a set of approved drugs, which are displayed on in the new Target Predictions section of the Compound Report Card, where applicable. Since some of the predictions correspond to compound/target pairs that were included in the training set for the models, these are shown in white, to distinguish them from genuine predictions (coloured light yellow). Only predictions scoring >= 0.2 are included in the result tables. The models were built with open source tools such as RDKit and scikit-learn and are available upon request.



We would appreciate any feedback on this feature, and any further ideas you may have on including predicted data on top of ChEMBL experimental data.

 

UniChem connectivity mapping

 

In addition to the standard UniChem cross-references shown on the report card (based on exact InChI Key matching), a new link is included to an expanded view of UniChem cross-references, generated based on InChI connectivity layer matching (e.g.,

https://www.ebi.ac.uk/chembl/compound/unichem_connectivity/GJJFMKBJSRMPLA-DZGCQCFKSA-N). 

This expanded view shows any compounds in UniChem that share the same connectivity as the query structure, even if they have stereochemical, isotopic or protonation state differences. The differences between the query and retrieved structures are shown by their position in the table: the first column shows compounds that match in all InChI layers, while the subsequent columns show those structures that differ in stereochemistry (s column), isotope (i column), protonation state (p column), or various combinations of these layers (final four columns). A button at the top of the table gives the additional option to retrieve compounds that match individual components of a mixture or salt. Where the query structure consists of multiple components, matches to each of these components will be coloured different colours (e.g., black, blue, red). 

 

ChEMBL RDF Update

 

The ChEMBL RDF data model has been enhanced and now includes the following information:
  • Drug mechanism of action and binding site information
  • Molecule hierarchy
  • Target relationships
  • Assay format
  • Cell-line information
More information (documentation, SPARQL endpoint and example queries), about the RDF version of the ChEMBL database can be found on the EBI-RDF Platform and you can download the RDF files from the ChEMBL ftpsite.

 

Web Service Update

 

Three new Web Service calls focused on approved drugs, mechanism of action and compound forms are now available. Example calls to these methods can be seen below and also please visit the ChEMBL Web Service page for more details.


http://www.ebi.ac.uk/chemblws/targets/CHEMBL1824/approvedDrug.json
http://www.ebi.ac.uk/chemblws/compounds/CHEMBL1642/drugMechanism.json
http://www.ebi.ac.uk/chemblws/compounds/CHEMBL278020/form.json



As always, we greatly appreciate to reporting of any omissions or errors.

The ChEMBL Team

Comments

Unknown said…
Nice work on the predictions. But how exactly are they done? I'm curious as to which features are used, and what are the performance statistics at various posterior probability cutoffs.
Unknown said…
Hi David,
For more info see http://chembl.blogspot.co.uk/2014/04/ligand-based-target-predictions-in.html

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no