Skip to main content

Ligand-based target predictions in ChEMBL



In case you haven't noticed, ChEMBL_18 has arrived. As usual, it brings new additions, improvements and enhancements both on the data/annotation, as well as on the interface. One of the new features is the target predictions for small molecule drugs. If you go to the compound report card for such a drug, say imatinib or cabozantinib, and scroll down towards the bottom of the page, you'll see two tables with predicted single-protein targets, corresponding to the two models that we used for the predictions. 


 - So what are these models and how were they generated? 

They belong to the family of the so-called ligand-based target prediction methods. That means that the models are trained using ligand information only. Specifically, the model learns what substructural features (encoded as fingerprints) of ligands correlate with activity against a certain target and assign a score to each of these features. Given a new molecule with a new set of features, the model sums the individual feature scores for all the targets and comes up with a sorted list of likely targets with the highest scores. Ligand-based target prediction methods have been quite popular over the last years as they have been proved useful for target-deconvolution and mode-of-action prediction of phenotypic hits / orphan actives. See here for an example of such an approach and here for a comprehensive review.


 - OK, and how where they generated?

As usual, it all started with a carefully selected subset of ChEMBL_18 data containing pairs of compounds and single-protein targets. We used two activity cut-offs, namely 1uM and a more relaxed 10uM, which correspond to two models trained on bioactivity data against 1028 and 1244 targets respectively. KNIME and pandas were used for the data pre-processing. Morgan fingerprints (radius=2) were calculated using RDKit and then used to train a multinomial Naive Bayesian multi-category scikit-learn model. These models then were used to predict targets for the small molecule drugs as mentioned above. 


 - Any validation? 

Besides more trivial property predictions such as logP/logD, this is the first time ChEMBL hosts non experimental/measured data - so this is a big deal and we wanted to try and do this right. First of all, we did a 5-fold stratified cross-validation. But how do you assess a model with a many-to-many relationship between items (compounds) and categories (targets)? For each compound in each of the 5 20% test sets, we got the top 10 ranked predictions. We then checked whether these predictions agree with the known targets for that compound. Ideally, the known target should be correctly predicted at the 1st position of the ranked list, otherwise at the 2nd position, the 3rd and so on. By aggregating over all compounds of all test sets, you get this pie chart:


This means that a known target is correctly predicted by the model at the first attempt (Position 1 in the list of predicted targets) in ~69% of the cases. Actually, only 9% of compounds in the test sets had completely mis-predicted known targets within the top 10 predictions list (Found above 10). 

This is related to precision but what about recall of know targets? here's another chart:



This means that, on average, by considering the top 10 most likely target predictions (<1% of the target pool), the model can correctly predict around ~89% of a compound's known single protein targets. 

Finally, we compared the new open source approach (right) to an established one generated with a commercial workflow environment software (left) using the same data and very similar descriptors:


If you manage to ignore for a moment the slightly different colour coding, you'll see that their predictive performance is pretty much equivalent.

 - It all sounds good, but can I get predictions for my own compounds?

We could provide the models and examples in IPython Notebook on how to use these on another blog post that will follow soon. There are also plans for a publicly available target prediction web service, something like SMILES to predicted targets. Actually, if you would be interested in this, or if you have any feedback or suggestions for the target prediction functionality, let us know

George

Comments

Unknown said…
Very nice post, cheers!
Unknown said…
Any thoughts on the domain of validity in chemical space of these models? Do you expect them to work well across all of chembl, and if not can you specify what compounds they will fail on?
Unknown said…
Thank You for the very interesting work! I have some questions. First of all, i don't quite understand your validation technique. For example: a compound has 3 targets. Target 1 was found at the first position; target 2 was found at the second position and target 3 was not found in top 10 list of predictions. What did you do exactly in similar cases? Second, how many compounds are there in your training set?

Popular posts from this blog

UniChem 2.0

UniChem new beta interface and web services We are excited to announce that our UniChem beta site will become the default one on the 11th of May. The new system will allow us to better maintain UniChem and to bring new functionality in a more sustainable way. The current interface and web services will still be reachable for a period of time at https://www.ebi.ac.uk/unichem/legacy . In addition to it, the most popular legacy REST endpoints will also remain implemented in the new web services: https://www.ebi.ac.uk/unichem/api/docs#/Legacy Some downtime is expected during the swap.  What's new? UniChem’s current API and web application is implemented with a framework version that’s not maintained and the cost of updating it surpasses the cost of rebuilding it. In order to improve stability, security, and support the implementation and fast delivery of new features, we have decided to revamp our user-facing systems using the latest version of widely used and maintained frameworks, i

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

ChEMBL 30 released

  We are pleased to announce the release of ChEMBL 30. This version of the database, prepared on 22/02/2022 contains: 2,786,911 compound records 2,157,379 compounds (of which 2,136,187 have mol files) 19,286,751 activities 1,458,215 assays 14,855 targets 84,092 documents Data can be downloaded from the ChEMBL FTP site: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/ Please see ChEMBL_30 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/chembl_30_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document ID CHEMBL4689842):   The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesize at least

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra