Skip to main content

myChEMBL 19 Released



                     
We are very pleased to announce that the latest myChEMBL release, based on the ChEMBL 19 database,  is now available to download. In addition to the extra data, you will also find a number a great new features. So what's new then?

More core chemoinformatics tools

We have included OSRA (Optical Structure Recognition), which is useful for extracting compound structures from images. OSRA can be accessed from the command line or by very convenient web interface, provided by Beaker (described below). We've also added OpenBabel - another great open source cheminformatics toolkit. This means you can now experiment with both RDKit and OpenBabel and use whichever you prefer.

ChEMBL Beaker

myChEMBL now ships with a local instance the ChEMBL Beaker service. For those not familiar with Beaker, the service provides users with an array of chemoinformatics utilities via a RESTful API. Under the hood, Beaker is using RDKit and OSRA to carry out its methods. With the addition of Beaker in myChEMBL, users can now carry out the following tasks in secure local environment:
  • Convert chemical structure bewteen multiple formats
  • Extract compound information from images and pdfs
  • Generate compound images in raster (png) and vector (svg) forms
  • Generate HTML5 ready representation of compound structure
  • Generate compound fingerprints
  • Generate compound descriptors
  • Identify Maximum Common Substructure
  • Compound standardisation
  • Lots of more calculations

 

New IPython notebooks

We have written a number of new IPyhthon notebooks, which focus on a range of cheminformatics and bioinformatic topics. The topics covered by the new notebooks include:
  • Introduction on how to use ChEMBL Beaker
  • Using the Django ORM to query the ChEMBL database
  • Introduction to BLAST and creation of a simple Druggability Score
  • Introduction to machine learning
  • Analysis of SureChEMBL data, focused on identifying the MCS core identified in a patent 
  • Extraction and analysis of ChEMBL ADME data 

We have also updated the underlying Ubuntu VM to 14.04 LTS, which also required us to make a number of changes the myChEMBL installation. To see how these changes and new additions have effected a bare metal installation of myChEMBL, head over the myChEMBL github repository.

 

Installation

There are 2 different ways we recommend for installing myChEMBL:
  1. Follow the instructions in the INSTALL file on the ftpsite. This will import the myChEMBL VM into VirtualBox
  2. Use Vagrant to install myChEMBL. See this earlier blogpost for more details, but the command to run is:
vagrant init chembl/myChEMBL && vagrant up

   If you already have myChEMBL_18 installed via Vagrant, instead of running 'vagrant box update', we strongly recommend running: 

vagrant box remove chembl/myChEMBL
vagrant init chembl/myChEMBL && vagrant up

Future plans

The myChEMBL resource is an evolving system and we are always looking to add new open source projects, tools and notebooks. We would be really interested to hear from users about what they would like to see in future myChEMBL releases, so please get in touch if you have any suggestions. (Just so you know, we already have a couple of ideas for myChEMBL 20).

We hope you find this myChEMBL update useful and if you spot any issues or have any questions let us know.

The myChEMBL Team

Comments

Unknown said…
Any troubleshooting section, I am one of those having issues with the network thingi in the virtualbox.

I followed the instruction, but cant access the http://IP adress?
Mark Davies said…
Hi Jörg,

Sorry to hear you are having problems with the install. If you have time maybe you could send some more details to 'mychembl at ebi.ac.uk'. One thing we did notice recently, which caused a similar issue to what you describe was the 'Adapter Type' in the Advanced network settings was set to a server version - it should be changed to the desktop equivalent, something like 'Intel PRO/1000 MT Desktop'.

Thanks

Mark

Popular posts from this blog

ChEMBL 30 released

  We are pleased to announce the release of ChEMBL 30. This version of the database, prepared on 22/02/2022 contains: 2,786,911 compound records 2,157,379 compounds (of which 2,136,187 have mol files) 19,286,751 activities 1,458,215 assays 14,855 targets 84,092 documents Data can be downloaded from the ChEMBL FTP site: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/ Please see ChEMBL_30 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/chembl_30_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document ID CHEMBL4689842):   The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesize at least

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

Mapping lists of IDs in ChEMBL

In order to facilitate the mapping of identifiers in ChEMBL, we have developed a new type of search in the ChEMBL Interface. Now, it is possible to enter a list of ChEMBL IDs and see a list of the corresponding entities. Here is an example: 1. Open the ChEMBL Interface , on the main search bar, click on 'Advanced Search': 2. Click on the 'Search by IDs' tab: 3. Select the source entity of the IDs and the destination entity that you want to map to: 4. Enter the identifiers, you can either paste them, or select a file to upload. When you paste IDs, by default it tries to detect the separator. You can also select from a list of separators to force a specific one: Alternatively, you can upload a file, the file can be compressed in GZIP and ZIP formats, this makes the transfer of the file to the ChEMBL servers faster. Examples of the files that can be uploaded to the search by IDs can be found  here . 5. Click on the search button: 6. You will be redirected to a search resul