Skip to main content

An overview and invitation to contribute to ChEMBL curation with PPDMs

PPDMs has been in the making for more than a year and is a follow-up on a conference paper we published in 2012. As in 2012, our objective is to map small molecule binding sites to protein domains, the structural units that form recurring building blocks in the evolution of proteins. An application note describing PPDMs is just out in Bioinformatics.

Mapping small molecule binding to protein domains

The mapping facilitates the functional interpretation of small molecule-protein interactions - if you understand which domain in a protein is targeted, you are in a better position to anticipate the downstream effect.  Mapping small molecule binding to protein domains also provides a technical advantage to machine-learning approaches that incorporate protein sequence information as a descriptor to predict small molecule bioactivity. Reducing the sequence descriptor to the part that mediates small molecule binding increases the informative content of the descriptor. This is best exemplified by the domain-poisoning problem, illustrated below.
Result of a hypothetical query using as input the rat Tyrosine-protein phosphatase Syp (P35235) - and one of the hits, retrieved from a BLAST query against the ChEMBL target dictionary - the rat Tyrosine-protein kinase SYK (Q64725). The significant e-value for this query results from high scoring alignments of the SH2 domains. At the same time, the overlap between small molecules binding both proteins is expected to be low.

A simple heuristic

For individual experiments, it is often quite trivial to decide which domain was targeted. For example, medicinal chemists know whether their compound is a kinase inhibitor or one of a handful of SH2 inhibitors. This knowledge, while easily gleaned by the expert, is implicit and cannot be accessed programmatically. Hence we were motivated to implement a solution that could achieve this across as many measured bioactivities as possible.

Our initial implementation of mapping small molecules to protein domains consisted of a simple heuristic: Identify domains with known small molecule interaction and use these domains as a look-up when mapping measured bioactivities to protein domains. This process is illustrated in the figure below.

A catalogue of validated domains was extracted from assays against single-domain proteins (step 1, 2) and projected onto measured bioactivities in ChEMBL (step 3). Three possible outcomes are: i) A successful mapping if exactly one of the Pfam-A domain models from the catalogue matches the sequence; ii) No mapping if none of the Pfam-A domain models from the catalogue match the sequence; iii) A conflicting mapping if multiple domain models from the catalogue match the sequence.
Despite its simplicity, this method works surprisingly well, owing to the fact that protein domains that are relevant to drug discovery are prioritised in Pfam-A model curation. Another factor that contributes here is the conservative route taken by many drug discovery projects that focus on targets that are in well characterised protein families. However, as illustrated by the cases labelled ii) and iii), some constellations are not covered by the simple heuristic.

A public platform to review and improve mappings


Measured activities in ChEMBL falling into category iii) from the illustration above amount to only a fraction of the total but often reflect interesting biology. DHFR-TS for example is a multi-functional enzyme combining both a DHFR and Thymidylate_synt domain that occurs in the group of bikonts, which includes Trypanosoma and Plasmodium. In humans (and all metazoa), these domains occur as separate enzymes.
Small molecule inhibitors exist for both domains, DHFR (yellow, with Pyrimethamine) and Thymidylate synthase (blue, with Deoxyuridine monophosphate).
We built PPDMs as a platform to resolve such cases. PPDMs aggregates information that supports manual mapping assignments based on medicinal chemistry knowledge. New mappings can be  committed to the PPDMs logs and then transferred to the ChEMBL database in future releases.

The Conflicts section on the website summarises conflicts (cases that correspond to category iii as discussed above) that were encountered when the mapping was applied to measured activities in the ChEMBL database and offers an interface to resolve them.

The Evidence section provides the full catalogue of domains for which we found evidence of small molecule binding. Evidence for the majority of domains in this list is provided in the form of measured bioactivities in ChEMBL, while in a few cases we provide a reference to the literature. These are cases where well-known domains occur exclusively in multi-domain architectures, such as 7tm_2 and 7tm_3. The catalogue can be downloaded in full from this section.

PPDMs also provides logs of individual assignments - these can be queried by date, user and comments left when the assignment was made. A log of all assigned mappings can be downloaded from this section. Another way to review assigned mappings is through the Resolved section, where assignments are grouped by domain architecture.

We invite everyone with an interest in the matter to sign up with PPDMs, whether it's simply for playing around, resolving remaining conflicts, or reviewing existing assignments.  Please get in touch and we'll sort out a login for you!

felix

Comments

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d