Skip to main content

An overview and invitation to contribute to ChEMBL curation with PPDMs

PPDMs has been in the making for more than a year and is a follow-up on a conference paper we published in 2012. As in 2012, our objective is to map small molecule binding sites to protein domains, the structural units that form recurring building blocks in the evolution of proteins. An application note describing PPDMs is just out in Bioinformatics.

Mapping small molecule binding to protein domains

The mapping facilitates the functional interpretation of small molecule-protein interactions - if you understand which domain in a protein is targeted, you are in a better position to anticipate the downstream effect.  Mapping small molecule binding to protein domains also provides a technical advantage to machine-learning approaches that incorporate protein sequence information as a descriptor to predict small molecule bioactivity. Reducing the sequence descriptor to the part that mediates small molecule binding increases the informative content of the descriptor. This is best exemplified by the domain-poisoning problem, illustrated below.
Result of a hypothetical query using as input the rat Tyrosine-protein phosphatase Syp (P35235) - and one of the hits, retrieved from a BLAST query against the ChEMBL target dictionary - the rat Tyrosine-protein kinase SYK (Q64725). The significant e-value for this query results from high scoring alignments of the SH2 domains. At the same time, the overlap between small molecules binding both proteins is expected to be low.

A simple heuristic

For individual experiments, it is often quite trivial to decide which domain was targeted. For example, medicinal chemists know whether their compound is a kinase inhibitor or one of a handful of SH2 inhibitors. This knowledge, while easily gleaned by the expert, is implicit and cannot be accessed programmatically. Hence we were motivated to implement a solution that could achieve this across as many measured bioactivities as possible.

Our initial implementation of mapping small molecules to protein domains consisted of a simple heuristic: Identify domains with known small molecule interaction and use these domains as a look-up when mapping measured bioactivities to protein domains. This process is illustrated in the figure below.

A catalogue of validated domains was extracted from assays against single-domain proteins (step 1, 2) and projected onto measured bioactivities in ChEMBL (step 3). Three possible outcomes are: i) A successful mapping if exactly one of the Pfam-A domain models from the catalogue matches the sequence; ii) No mapping if none of the Pfam-A domain models from the catalogue match the sequence; iii) A conflicting mapping if multiple domain models from the catalogue match the sequence.
Despite its simplicity, this method works surprisingly well, owing to the fact that protein domains that are relevant to drug discovery are prioritised in Pfam-A model curation. Another factor that contributes here is the conservative route taken by many drug discovery projects that focus on targets that are in well characterised protein families. However, as illustrated by the cases labelled ii) and iii), some constellations are not covered by the simple heuristic.

A public platform to review and improve mappings


Measured activities in ChEMBL falling into category iii) from the illustration above amount to only a fraction of the total but often reflect interesting biology. DHFR-TS for example is a multi-functional enzyme combining both a DHFR and Thymidylate_synt domain that occurs in the group of bikonts, which includes Trypanosoma and Plasmodium. In humans (and all metazoa), these domains occur as separate enzymes.
Small molecule inhibitors exist for both domains, DHFR (yellow, with Pyrimethamine) and Thymidylate synthase (blue, with Deoxyuridine monophosphate).
We built PPDMs as a platform to resolve such cases. PPDMs aggregates information that supports manual mapping assignments based on medicinal chemistry knowledge. New mappings can be  committed to the PPDMs logs and then transferred to the ChEMBL database in future releases.

The Conflicts section on the website summarises conflicts (cases that correspond to category iii as discussed above) that were encountered when the mapping was applied to measured activities in the ChEMBL database and offers an interface to resolve them.

The Evidence section provides the full catalogue of domains for which we found evidence of small molecule binding. Evidence for the majority of domains in this list is provided in the form of measured bioactivities in ChEMBL, while in a few cases we provide a reference to the literature. These are cases where well-known domains occur exclusively in multi-domain architectures, such as 7tm_2 and 7tm_3. The catalogue can be downloaded in full from this section.

PPDMs also provides logs of individual assignments - these can be queried by date, user and comments left when the assignment was made. A log of all assigned mappings can be downloaded from this section. Another way to review assigned mappings is through the Resolved section, where assignments are grouped by domain architecture.

We invite everyone with an interest in the matter to sign up with PPDMs, whether it's simply for playing around, resolving remaining conflicts, or reviewing existing assignments.  Please get in touch and we'll sort out a login for you!

felix

Comments

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no