Skip to main content

ChEMBL python client update



Along with updating ChEMBL web services to the new 2.x version, we've also updated the python client library (chembl_webresource_client). The change was backwards compatible so it's possible that existing users haven't even noticed the change.

As we've already provided examples of using new web services via cURL or using live docs, now it's good time to explain the changes made to the python client.

First of all, if you haven't installed (or updated) it yet, you can do it using Python Package Index:


Now you can access new functionality using the following import statement:


Just as a mild warning, in 0.8.x versions of the client the new part will be called new_client. In 0.9.x it will change the name to client and the old part will be renamed to old_client and deprecated. In 1.0.x the old functionality will be removed completely.

OK, so since we know how to import our new_client object, we can try to do something useful. Let's retrieve some activities. We know, that the new web services introduces filtering, so we can try to get only activities with standard type equal to 'Ki' and with standard value greater or equal 5:


We've already applied two filters, so you may expect that the client made two requests to server as well (one to get all activities with specified standard type and another one to filter on the standard value). In reality no interaction with server has been performed so far. This is because our client is lazy - but in the good sense. It waits until you are actually trying to use some of the data requested and then tries to perform the most sensible query to the server so you don't have to care.

So If we would like to access the fifth element:


the client will interact with server and retrieve a chunk of data that is large enough to prevent from hammering the server too frequently. The data is then cached locally, so if you restart your computer and rerun your script all the data will be fetched from the cache (if available).

A careful reader with IT background will notice that our client presents an interface that is very similar to Django QuerySet. This is true, we designed our client to mimic Django ORM behavior by implementing chaining filters and lazy evaluation. You don't have to be a Django expert to see advantages of such approach, but if you do have some experience with Django, you will feel like home.

To cover most important use cases we've created an IPython notebook, comparing the client with the plain requests library approach. The notebook is loaded into myChEMBL so if you have myChEMBL running locally, you can give it a try immediately. If not, just install the client and follow the tutorial below:


Comments

Unknown said…
Any plan to make compatible with python 3.X ?
kott said…
Yes, this is one of the most important issues and will be resolved soon, you can check the progress by subscribing notifications from this ticket: https://github.com/chembl/chembl_webresource_client/issues/9
kott said…
This is now completed and chembl_webresource_client ver. 0.8.31+ supports Python 3.
Unknown said…
Thanks. The example on the blog post is working (with some minor modifications)

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d