Skip to main content

myChEMBL 20 has landed




We are very pleased to announce that the latest myChEMBL release, based on the ChEMBL 20 database, is now available to download. In addition to the ChEMBL upgrade, you will also find a number of changes and new features:


  • Updates in system and Python libraries, including the iPython notebook server
  • Upgrade in the web services (data and utils) to match the new functionality provided by the main ChEMBL ones
  • Current stable version of RDKit (2015.03)
  • Two brand new notebooks, namely an RDKit tutorial and a tutorial on SureChEMBL data mining, increasing the total number of notebooks to 14
  • Updates in several other iPython notebooks and the KNIME workflow, in order to take advantage of the new data, models and web services functionality
  • Several bug fixes
  • A CentOS 7 VM version, in addition to the existing Ubuntu 14.04 one
  • New virtualisation technologies, as explained in the section below


Lots of flavours

dipping case3.JPG

This new myChEMBL release is technical feature-rich, as we’ve decided to focus on providing a  variety of myChEMBL boxes and image formats via different distribution channels:

  1. New CentOS-based distribution - as requested by many users, we now provide a CentOS-based image, along with the existing Ubuntu one. CentOS is a Linux distribution that is focused on security and enterprise-class computing. It’s free and widely used in industry so no further introduction is needed. Our box is based on the latest stable version 7. One thing worth noting is that CentOS-based images are significantly smaller than Ubuntu ones.
  2. Different image formats - in addition to the standard vmdk images now available for Ubuntu and CentOS, we also provide other image formats. Although VMDK is an open format, it’s mainly used by proprietary software, such as vSphere. We decided to support free and open-source hypevisors as well, so this is why we are now publishing QEMU compatible qcow2 format. To help even more, we are providing a generic raw disk image dumps in img format which can then be converted to any other specific format to provide support for other virtualisation platforms. In fact, we used img files to generate qqow2 by running qemu-img convert -f raw -O qcow2 ubuntu.img ubuntu.qcow2
  3. Distribution channels - the traditional way to get myChEMBL image is to visit our FTP page. You can find there compressed images of our Ubuntu and CentOS myChEMBL distributions in different image formats. If you want to save time creating and configuring your Virtual Machine from scratch, you can use Vagrant instead of FTP. If you have Vagrant already installed, all you need to do is to open the terminal and type:
    vagrant init chembl/mychembl_20_ubuntu && vagrant up or:
    vagrant init chembl/mychembl_20_centos && vagrant up
    depending on the version you would like to use.
  4. An additional cool new feature is docker support but, since docker is a quite new technology, we would like to dedicate a separate blog post to this topic - so come back soon for exciting details.


Installation

There are now several different ways for installing myChEMBL:

  1. Follow the instructions in the INSTALL file on the ftpsite. This will import the myChEMBL VM into VirtualBox.
  2. Use Vagrant to install myChEMBL. See  point 3 in the section above.
  3. Bare metal - if you have a clean Ubuntu or CentOS box with root access and want to install myChEMBL software directly, then you may run:
    wget https://raw.githubusercontent.com/chembl/mychembl/master/bootstrap.sh && chmod +x bootstrap.sh && bash bootstrap.sh
    for Ubuntu or:
    wget https://github.com/chembl/mychembl/blob/master/bootstrap_centOS.sh && chmod +x bootstrap_centOS.sh && bash bootstrap_centOS.sh
    for CentOS.
  4. Instructions for Docker will be released #soon in a coming blog post.

As usual, the full codebase lives on GitHub


Publications and webinars

myChEMBL is reported and documented in two Open Access publications, namely here and here. In case you're new to myChEMBL, there is also a recorded webinar and its associated slides here


Future plans

The myChEMBL resource is an evolving system and we are always interested in new open source projects, tools and notebooks. Please get in touch if you have any suggestions or questions.



The myChEMBL team

Comments

Unknown said…
CentOS based myChembl is brilliant.. ! To bad i have just finished installing remus... :(

Unknown said…
Hey, why won't you use qcow2's compression instead of tar.gz? You wouldn't need to decompress it and save some more disk space. I had a blog post about using myCHEMBL in KVM about a year or so, and the compression worked like a charm. The initial image was roughly the same size as tarball, but functional. It will grow over time. I don't know how big is the performance hit, although for light usage there was no difference at all. For reference see http://maciek.wojcikowski.pl/2014/06/mychembl-running-on-kvm/
kott said…
Thank you Maciek, we will use qcow2 compression for myChEMBL 21.

Popular posts from this blog

ChEMBL_27 SARS-CoV-2 release

The COVID-19 pandemic has resulted in an unprecedented effort across the global scientific community. Drug discovery groups are contributing in several ways, including the screening of compounds to identify those with potential anti-SARS-CoV-2 activity. When the compounds being assayed are marketed drugs or compounds in clinical development then this may identify potential repurposing opportunities (though there are many other factors to consider including safety and PK/PD considerations; see for example https://www.medrxiv.org/content/10.1101/2020.04.16.20068379v1.full.pdf+html). The results from such compound screening can also help inform and drive our understanding of the complex interplay between virus and host at different stages of infection.
Several large-scale drug screening studies have now been described and made available as pre-prints or as peer-reviewed publications. The ChEMBL team has been following these developments with significant interest, and as a contribution t…

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible?

Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook!

We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it.

With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below:
docker pull eloyfelix/rdkit_jupyter_clingdocker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_clingopen http://localhost:9999/notebooks/rdkit_cling.ipynb in a browser


FPSim2, a simple Python3 molecular similarity tool

FPSim2 is a new tool for fast similarity search on big compound datasets (>100 million) being developed at ChEMBL. We started developing it as we needed a Python3 library able to run either in memory or out-of-core fast similarity searches on such dataset sizes.

It's written in Python/Cython and features:
A fast population count algorithm (builtin-popcnt-unrolled) from https://github.com/WojciechMula/sse-popcount using SIMD instructions.Bounds for sub-linear speed-ups from 10.1021/ci600358fA compressed file format with optimised read speed based in PyTables and BLOSCUse of multiple cores in a single search In memory and on disk search modesSimple and easy to use
Source code is available on github and Conda packages are also available for either mac or linux. To install it type:

conda install rdkit -c rdkitconda install fpsim2 -c efelix
Try it with docker (much better performance than binder):

    docker pull eloyfelix/fpsim2    docker run -p 9999:9999 eloyfelix/fpsim2    open htt…

2019 and ChEMBL – News, jobs and birthdays

Happy New Year from the ChEMBL Group to all our users and collaborators. 
Firstly, do you want a new challenge in 2019?  If so, we have a position for a bioinformatician in the ChEMBL Team to develop pipelines for identifying links between therapeutic targets, drugs and diseases.  You will be based in the ChEMBL team but also work in collaboration with the exciting Open Targets initiative.  More details can be found here(closing date 24thJanuary). 
In case you missed it, we published a paper at the end of last on the latest developments of the ChEMBL database “ChEMBL: towards direct deposition of bioassay data”. You can read it here.  Highlights include bioactivity data from patents, human pharmacokinetic data from prescribing information, deposited data from neglected disease screening and data from the IMI funded K4DD project.  We have also added a lot of new annotations on the therapeutic targets and indications for clinical candidates and marketed drugs to ChEMBL.  Importantly we ha…

ChEMBL 25 and new web interface released

We are pleased to announce the release of ChEMBL 25 and our new web interface. This version of the database, prepared on 10/12/2018 contains:

2,335,417 compound records1,879,206 compounds (of which 1,870,461 have mol files)15,504,603 activities1,125,387 assays12,482 targets72,271 documents

Data can be downloaded from the ChEMBL ftp site: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25

Please see ChEMBL_25 release notes for full details of all changes in this release: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/chembl_25_release_notes.txt


DATA CHANGES SINCE THE LAST RELEASE

# Deposited Data Sets:

Kuster Lab Chemical Proteomics Drug Profiling (src_id = 48, Document ChEMBL_ID = CHEMBL3991601):
Data have been included from the publication: The target landscape of clinical kinase drugs. Klaeger S, Heinzlmeir S and Wilhelm M et al (2017), Science, 358-6367 (https://doi.org/10.1126/science.aan4368)

# In Vivo Assay Classification:

A classification…