Skip to main content

Molecular databases and molecule complexity - part 2



Let have some examples - benzene (chembl277500) is unambiguous, it has no possibility of forming any tautomers, it cannot become protonated or lose a proton (i.e. act as a base or acid) under anything approaching physical conditions, it has no stereocenters, and furthermore has no internal degrees of freedom (it it conformationally rigid). So there is no ambiguity over calculated properties such as logP, molecular weight, etc, and you could take the structure directly from a database and do things like docking with it.



Next is pyridine (chembl266158), this has two biological forms, it is still rigid, and has no stereocenters or tautomeric forms, however, it can act as a base, and so can exist in a protonated form. These two forms have different molecular weights, overall charge and many other differences (for example, it's molecular dipole).


In particular, the binding to a receptor will be very different for these two forms, pyridine can act as a hydrogen bond acceptor, while the protonated for can't, but can act as a hydrogen bond donor - in one important factor the two forms of pyridine are opposite. The fraction of the two forms in biological systems will depend on the pH of the biological or experimental system, and also the pKa of pyridine (around 5.2 for the pKa of the conjugate acid). Typically, chemical databases will calculate and display properties for the neutral form of pyridine. Users, performing tasks such as docking, will probably need to consider both forms and dock two molecules not one.

A slightly more complicated case is 2-hydroxypyridine (chembl662), which is a classic case of tautomerism. The structure can be drawn with alternate bonding, but the two forms can rapidly interconvert. The is a small free energy difference between these two forms. The other tautomer (and the form found in solid samples of 2-hydroxypyridine) has the trivial name 2-pyridone. In solution, both forms are found, with the fractions found of each form depending on the solvent polarity.



These forms have the same molecular mass, have no stereochemical centers, but will have different calculated properties - the clogP will be different for the two forms. It is important to remember though that due to the fact they are rapidly interconvertable, they will appear to have a single logP experimentally. Again, due to the differences in hydrogen bonding potential, two forms need to be considered for a tasks like docking. What chemical databases do with cases like this varies, but typically a single tautomeric form will be used to calculate properties such as logP. What tautomer is used will depend on the particular software used.

Finally, another simple system, this time showing ambiguity over charge - 3-hydroxypyridine (chembl237847). This molecule exists in solution as an equilibrium of two physical forms, a neutral form, and a zwitterion. Calculated properties of these two forms for things like clogP will be different, the molecular weight will be the same, but again, for docking explicit consideration of the two distinct forms is required.


So hopefully, some simple examples showing that a single 2D structure of a molecule in a database can have multiple physically differing forms that can affect the calculation of properties and also have large impact on their use in modelling. Hopefully, I've also highlighted that this complexity is usually poorly handled in chemical databases (not least the current version of ChEMBL).

In the next part, we'll talk about just how complex this ambiguity is, the astronomical number of distinct structural forms possible for some molecules, and also address stereochemistry and conformational flexibility. 

Comments

Nice post!

Benzene is unambiguous, because of symmetry only. However, it's delocalization feature does pose problems for databases. Take 1,2-dimethylbenzene, which breaks the symmetry, and you run into the problem that the ring bond between the two methyls can be single or double, or, and that is what many databases do, aromatic.

I am still puzzled why the cheminformatics field did not choose for 'delocalized' instead; aromaticity is just a crappy concept.

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

ChEMBL 26 Released

We are pleased to announce the release of ChEMBL_26 This version of the database, prepared on 10/01/2020 contains: 2,425,876 compound records 1,950,765 compounds (of which 1,940,733 have mol files) 15,996,368 activities 1,221,311 assays 13,377 targets 76,076 documents You can query the ChEMBL 26 data online via the ChEMBL Interface and you can also download the data from the ChEMBL FTP site . Please see ChEMBL_26 release notes for full details of all changes in this release. Changes since the last release: * Deposited Data Sets: CO-ADD antimicrobial screening data: Two new data sets have been included from the Community for Open Access Drug Discovery (CO-ADD). These data sets are screening of the NIH NCI Natural Product Set III in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296183, DOI = 10.6019/CHEMBL4296183) and screening of the NIH NCI Diversity Set V in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296182, DOI = 10.601