Skip to main content

Interest in Links to Patents From Structures in ChEMBL


We are exploring establishing links from the ChEMBL compounds to patents. The implementation can have two basic routes....


  • Links from the interface to patents (simple and quick to do now we have UniChem).
  • Patent uri's in the database itself (more complex, and more difficult to keep up to date, but arguably more useful).


So to help our planning for next year, comments, wishes are most welcome....

Comments

Bio to Chem said…
This sounds useful but that would depend on how and what links are going to be made. What would be the source of patent-extracted structures you would match against ?
jpo said…
Well, ChEMBL is not, and cannot become, a patent database; but there is value in providing links between compounds that are in ChEMBL and the patent literature. The integration would be at the level of proving a link from a ChEMBLid to the underlying patents claiming that compound, simply as a link to the patent document. Initially for compounds, but maybe, depending on how things work out, to targets too.

As to the source of the patent structures. There are a number of initiatives underway at the moment to text-mine chemical structures from patents. We're currently not free to say what some of these sources are, but one source could be the feed from the EPO team.

These structures would be loaded into UniChem (qv) and all the lookups done there.
Bio to Chem said…
An EPO patent structure feed would link nicely to the EBI patent abstracts and the ChEMBL/UniChem links already in CiteExplore for the papers. The tricky bit is locating the exemplar in the document. The millions of Complex Work Unit-derived structures just surfaced in SCRIPDB might also be might be worth considering but are USPTO-only. For the record you already have indirect patent document links in ChEMBL because the ChemSpider entries have an InChI look-up link to SureChem. You can only open three document links (for free) but some are first-filings. I think I know what one of the other feed options might be but we will see if/when this appears!
jpo said…
Thanks for the comments. At the moment, we have no funding or resource for any of these, so our aspirations are modest :) Just links to patents from Chemblids.

A big problem with other ways of chemical patent data are shown by your other comments - indirect access through semi-open resources, with significant onus on the user to ensure they don't violate any explicit or ambiguous usage constraints/licenses.

One of the ideas of patent filings is explicitly to make things easy to find so researchers don't waste time recreating other peoples IP, and also can build on top of this. Current systems do not really allow this.....

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d