Skip to main content

New Drug Approvals 2012 - Pt. IV - Vismodegib (ERIVEDGETM)







Wikipedia: Vismodegib

On Jan 31st 2012 the FDA approved Vismodegib (tradename: ErivedgeTM, previously known as GDC-0449 and HhAntag691) a hedgehog signalling pathway inhibitor for the treatment metastatic basal cell carcinoma.

This is a novel first-in-class medicine, which for the first time modulates the hedgehog pathway. The target of Vismodegib is smoothened (SMO) (UniProt:Q99835, CanSAR:link). SMO is a class F (or class 6) G-Protein Coupled Receptor (GPCR) also known as the Frizzled/Smoothened class (pfam:PF01534). Smoothened is distinct and different to the previously 'drugged' GPCRs (which primarily target class A/class 1 receptors). The 3D-structures of smoothened or any of its homologues have not been characterised and are believed to differ from Class 1 GPCRs.

Vismodegib (Chembl: CHEMBL473417, ChemSpider:23337846 PubChem:CID24776445, IUPAC: 2-chloro-N-[4-chloro-3-(pyridin-2-yl)phenyl]-4-(methylsulfonyl)benzamide) is a synthetic small molecule drug, and is fully rule-of-five compliant. The molecular weight is 421.3, and has an XlogP of 3.8). Normal dosing is 150 mg per day (equivalent to 356 umol).

Vismodegib is a highly permeable compound with low aqueous solubility (BCS Class 2) - the single dose absolute bioavailability of vismodegib is 31.8%. Absorption of vismodegib is saturable - shown by the lack of dose proportional increase in exposure after a single dose of 270 mg or 540 mg vismodegib.  The volume of distribution (Vd) of vismodegib ranges from 16.4 to 26.6 L, and plasma protein binding is greater than 99% - with binding observed to both human serum albumin (ALB) and alpha-1-acid glycoprotein (also known as Orosomucoid, ORM, AGP and AAG), it is also a substrate of the efflux transporter P-glycoprotein (P-gp). Greater than 98% of the total circulating drug-related components are the parent drug. Minor metabolic pathways of vismodegib in humans include oxidation, glucuronidation, and pyridine ring cleavage. Vismodegib and its metabolites are eliminated primarily by the hepatic route with 82% of the administered dose recovered in the feces and less than 5% in urine. The estimated elimination half-life (t1/2) of vismodegib is 4 days after continuous once-daily dosing, and 12 days after a single dose.

Vismodegib has a boxed warning for potential risk of causing embryonic death and serious birth defects.

The license for Vismodegib is held by Genentech.

Full Prescribing Information can be found here.

Comments

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

In search of the perfect assay description

Credit: Science biotech, CC BY-SA 4.0 Assays des cribe the experimental set-up when testing the activity of drug-like compounds against biological targets; they provide useful context for researchers interested in drug-target relationships. Ver sion 33 of ChEMBL contains 1.6 million diverse assays spanning ADMET, physicochemical, binding, functional and toxicity experiments. A set of well-defined and structured assay descriptions would be valuable for the drug discovery community, particularly for text mining and NLP projects. These would also support ChEMBL's ongoing efforts towards an  in vitro  assay classification. This Blog post will consider the features of the 'perfect' assay description and provide a guide for depositors on the submission of high quality data. ChEMBL's assays are typically structured with the overall aim, target, and method .  The ideal assay description is succinct but contains all the necessary information for easy interpretation by database u